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Abstract

Occupation probabilities for primary–secondary–primary cell strings and correlation functions
for primary sites of a decorated lattice model are expressed through the well-studied parti-
tion function and correlation functions of the Ising model. The results are analogous to those
found in related lattice models of hydrophobic interactions and are interpreted in similar terms.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Decorated-lattice-gas models that are equivalent to an underlying Ising model have
been important as models of two-component mixtures with closed-loop solubility curves
[1–3]. In summing over the states of the decoration sites in the partition function one
obtains an Ising model in which the energy and <eld parameters are related to the
parameters of the original mixture model by certain rules (transcription relations). The
interactions in the Ising model or in the equivalent one-component lattice gas may then
be understood to have arisen, or to have been altered, through the mediation of the
particles occupying the decorated sites (cells). In particular, the correlation functions
between the particles occupying the primary cells, which would be those of the under-
lying Ising model or one-component lattice gas, may be understood to have resulted
from such mediation. This is then analogous to the circumstance in recent lattice mod-
els of hydrophobic interactions [4–6], in which the solvent-mediated potential of mean
force between solute molecules is obtained in terms of the correlation functions of the
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Fig. 1. Mermin’s decorated lattice model.

pure solvent. In the present work the potentials of mean force between occupants of
the primary cells in a class of decorated-lattice-gas models with closed-loop solubil-
ity curves [1–3] are calculated and interpreted in terms similar to those in the lattice
models of hydrophobic interaction [4–6].
The model and the calculational machinery are outlined in the next section and

the results are then illustrated by numerical examples in Section 3. In Section 4 the
correlation lengths, which are the exponential decay lengths of the various correlation
functions, are calculated from those of the underlying Ising model and are displayed
numerically.

2. Decorated-lattice-gas model

We start with a brief review of a version of Mermin’s decorated lattice model [1],
Fig. 1, that describes a liquid mixture that possesses upper and lower critical solution
points and a closed-loop temperature–concentration coexistence curve [2,3]. Each cell,
primary or secondary, is occupied by a molecule, either of type 1 or 2. Each molecule
of either type has ! possible orientations. The only interaction takes place between
the molecules in adjacent primary–secondary cells. This interaction is de<ned to be 0
unless adjacent primary–secondary cells are occupied by molecules of diFerent types,
and its value then depends only on the orientation of the molecule in the secondary
cell. For each primary–secondary neighboring pair, if the occupant of the secondary
cell points to the primary cell occupied by an unlike molecule, the energy of interaction
is U2¡ 0; if it points in any other of !− 1 directions, the energy is U1¿ 0.

To calculate the partition function for the whole system we <rst write the partition
functions Qijk for all primary–secondary–primary cell strings for <xed occupations
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i and k of primary cells,

Q111 = Q222 = ! ;

Q121 = Q212 = 2e−(U1+U2)=kT + (!− 2)e−2U1=kT ;

Q122 = Q211 = Q112 = Q221 = e−U2=kT + (!− 1)e−U1=kT : (1)

We also introduce the activity ratio 
= z1=z2


= e(�1−�2)=kT
[
m1

m2

]d=2
; (2)

where mi and �i are molecular masses and chemical potentials for each species and d
is the dimensionality of space.
As in Eq. (62) of Ref. [2], we express the partition function of the model for the

<xed number N of primary cells as

Y = !N
∑
{ni}


N1 (Q111
+ Q121)N11 (Q212
+ Q222)N22 (Q112
+ Q122)N12 : (3)

Here Ni is the number of molecules of component i, Nij is the number of i; j pairs of
neighboring primary cells, and the sum is over all possible occupations “{ni}” of the
primary cells.
Now we can evaluate the probability Pijk to <nd a primary–secondary–primary cell

string being occupied by the molecules i, j, and k. It can be written as

Pijk =
2
qN

1
Y
!N

∑
{ni}


N1
Qijk [1 + �1j(
− 1)]∑2
n=1 Qink [1 + �1j(
− 1)]

Nik

×(Q111
+ Q121)N11 (Q212
+ Q222)N22 (Q112
+ Q122)N12 : (4)

Here qN=2 is the total number of bonds between N primary cells of the lattice with
coordination number q. If we multiply Qijk by an auxiliary factor �ijk , so that Qijk is
replaced by Qijk�ijk , the probability Pijk can be expressed as

Pijk =
2
qN

@ ln Y
@�ijk

∣∣∣∣
�ijk=0

: (5)

We also can calculate the number of occupants of secondary cells pointing towards
the opposite species occupants of primary cells, Np. This quantity is a measure of
orientational ordering of the system. Note that the orientations of molecules in primary
cells do not enter the expression for the partition function and therefore are isotropic
everywhere in the phase diagram. Since every secondary–primary cell neighboring pair
where the cells are occupied by opposite species and secondary cell occupants point
to the primary cell comes with a factor e−U2=kT , there is no need to introduce any
auxiliary multipliers:

Np =− 1
kT
@ ln Y
@U2

: (6)

The structure of this expression is similar to that of (4); it gives the probability of
<nding a particular ordered primary–secondary–primary string multiplied by the average
number of such strings.



52 I. Ispolatov et al. / Physica A 291 (2001) 49–59

To get the corresponding intensive quantity np, we need to divide Np by the number
of primary–secondary cell neighboring pairs qN (twice the number of primary–primary
neighboring pairs), np = Np=qN .
Another important class of correlation functions it is possible to calculate is a con-

nected pair and higher-order correlation functions for the primary cells. To underline
the connection to the Ising model, let us introduce the primary cell occupation num-
bers, nj=+1 for the jth cell being occupied by a molecule of species 1 and nj=−1 if
it is occupied by a molecule of species 2. Then N1 and N2 in Eq. (3) can be expressed
as N1 = (N +

∑N
j=1 nj)=2 and N2 = (N −∑N

j=1 nj)=2. We also introduce an auxiliary
local <eld �j, in the presence of which the partition function takes the form

Y = !N
N=2
∑
{ni}

e(1=2)
∑N

i=1
ni(�i+(1=2) ln 
)AN11

11 A
N22
22 A

N12
12 : (7)

Here we used the shorthand notations: A11 ≡ Q111
+Q121, A22 ≡ Q212
+Q222, A12 ≡
Q112
+ Q122.
As in the Ising model, the two-body connected correlation function for the primary

cells i and j, Ci;j ≡ 〈ninj〉 − 〈ni〉〈nj〉, can be expressed as

Ci;j =
@2 ln Y
@�i@�j

∣∣∣∣
{�k}=0

: (8)

In order to complete the calculation of correlation functions Pijk and Cij, we express
the partition function Y ({�i}) through the known partition and correlation functions for
the Ising model. Using lattice identities, qN1 = 2N11 + N12 and qN2 = 2N22 + N12, we
reduce Eq. (7) to

Y = !N
N=2(A11A22)qN=4
∑
{ni}

e(1=2)
∑N

i=1
ni(�i+(1=2) ln 
+(q=4) ln (A11=A22))

[
A12√
A11A22

]N12

:

(9)

On the other hand, for the Ising model with the Hamiltonian

H=−J
∑
〈i; j〉

sisj −
∑
i

si(H + �i) ; (10)

the partition function Z and the connected two-point correlation function CIsingi; j can be
expressed as

Z = e−qN=2
∑
{si}

e(1=kT )
∑N

i=1
ni(H+�i)+2JN+− ; (11)

CIsingi; j =
@2 ln Z
@�i@�j

∣∣∣∣
{�k}=0

: (12)

Here N+− is the number of bonds between up and down spins, which is equivalent in
the mixture model to the number of 1–2 neighboring pairs of primary cells, N+−=N12.
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We observe that the connected correlation function for the decorated lattice model
and Ising model are identical if the coupling constant J and external <eld H in the
Ising model are de<ned as

Ci;j = C
Ising
i; j ;

J
kT

〈=〉 − 1
2
ln
[

A12√
A11A22

]
;

H
kT

〈=〉1
2
ln 
+

q
4
ln
A11
A22

: (13)

We next proceed to the calculation of the k-point potential of mean force between
the occupants of the primary cells, Wk({i : : : j}) = −kT ln [〈%i : : : %j〉=〈%〉k ]. Since the
eFective interaction between occupants of primary cells depends on the species and
state of the occupants of the intervening secondary cells, the corresponding primary–
primary cell correlation functions may be viewed as having been mediated by those
secondary-cell occupants. This is analogous to the solvent-mediated correlations be-
tween solute molecules in related hydrophobic-interaction models [4–6], but it is to be
understood that in the present model the eFective correlations are not those between
molecules of the same species since molecules of both species may be the occupants
of either kind of site. Indeed, the correlations calculated here are those between the
occupants (whatever their species) of the same kind of site (the primary cells).
In the de<nition of W , %i is the non-negative occupation number (density) of the ith

cell. Since the actual amplitude of % in the de<nition of W cancels, it is convenient
to let it vary between 0 and 1, i.e., to de<ne it as %i ≡ (ni + 1)=2. It allows a k-point
potential of mean force to be expressed through the k- and lower-order connected
correlation functions in the Ising model. For example, for k = 2,

W2({i; j}) =−kT ln
[

Ci;j
(〈n〉+ 1)2

+ 1
]
: (14)

Here 〈n〉= @ ln Z=@H is the average occupation number or magnetization for the corre-
sponding Ising model. The correspondence between the parameters of the decorated
lattice model and Ising model is given by (13). Similarly, one can calculate the
higher-than-second-order correlation functions and potentials of mean force.
Finally, we show how to calculate the primary–secondary cell and secondary–

secondary cell correlation functions and potentials of mean force. Taking into account
Eqs. (1), we calculate a probability S{i1j} to <nd a particle of species 1 in the secondary
cell situated between primary cells occupied by molecules of species i and j:

S{111} =
!

!+ 2e−(U1+U2)=kT + (!− 2)e−2U1=kT
;

S{112} = S{122} =
1
2
;

S{212} =
2e−(U1+U2)=kT + (!− 2)e−2U1=kT

!+ 2e−(U1+U2)=kT + (!− 2)e−2U1=kT
: (15)

Taking into account the de<nition of % for primary cells given above, we express an
average density of molecules of the species 1 in secondary cells, %†, as

%† = 〈%i%j〉S{111} + 2〈(1− %i)%j〉S{211} + 〈(1− %i)(1− %j)〉S{212} : (16)
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Here %i and %j are the occupation numbers of the neighboring primary cells i and j.
Similarly, the primary–secondary-cell correlation function 〈%k%†l 〉 is expressed through
the following average:

〈%k%†l 〉= 〈%k%i%j〉S{111} + 〈%k(1− %i)%j〉S{211}
+〈%k%i(1− %j)〉S{112} + 〈%k(1− %i)(1− %j)〉S{212} : (17)

Here i and j are the primary cells between which the secondary cell l is situated.
It follows that the primary–secondary cell correlation function of the decorated lattice
model can be expressed through the energy-magnetization (3-point) correlation function
of the underlying Ising model and various 2-point correlation functions. Finally, for
the primary–secondary cell potential of mean force W̃ 2({k; l}), one obtains

W̃ 2({k; l}) =−kT ln
〈%k%†l 〉
〈%〉〈%†〉 : (18)

A similar approach shows that the secondary–secondary cell correlation function
and potential of mean force for the decorated lattice model can be expressed through
energy–energy (4-point), energy–magnetization (3-point) and 2-point correlation
functions.
Because of the generic nature of Mermin’s decorated lattice model, these results are

applicable for lattices in arbitrary dimension d with various coordination numbers q.

3. Examples

Using the formal mapping of the correlation functions of the decorated lattice model
onto the correlation functions of an Ising spin system, we perform computations of the
two- and three-body potential of mean force in two dimensions. The following values
were chosen for the model parameters: U1 =−U2 (with U1, unspeci<ed, then a scale
factor for the temperature), !=100, 
=1. The phase diagram for these values of the
parameters is shown in Fig. 2.
Despite the fact that the correlation functions for the Ising model are available an-

alytically in the form of series expansions (see, for example, Ref. [7]), we found it
more convenient to generate them each time directly using Monte Carlo simulations.
We used Metropolis and WolF algorithms (see, for example, Ref. [8]) 1 with the lattice
size varying from 100× 100 to 200× 200. All the results presented below were aver-
aged over the whole system and over 200 con<gurations; con<guration were considered
diFerent if they were separated by about 10 Oips for each spin in the WolF algorithm.
The correlation functions and potentials of mean force were measured along the lat-
tice (“normal”) unit vectors ((1; 0) and (0; 1)) and along the main diagonal (1; 1). We
found that in general the results for “normal” and “diagonal” measurements are very
similar. An example is in Fig. 3, where the two-body potential of mean force is shown.

1 We believe that there is a typographical error in Eqs. (4:53)–(4:54): a coePcient in front of (J in the
exponentials should be 2 instead of 4.
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Fig. 2. Closed loop temperature–concentration solubility curve. The dashed line marks the concentration
〈%〉 ≈ 0:08.

Fig. 3. Plots of the two-body potential of mean force at kT=U1 = 0:44 (solid line) and kT=U1 = 0:38; 0:51
(dashed line).

The dashed curve is a result of the superposition of normal and diagonal plots, with
normal and diagonal points occurring at integer and

√
2× integer lattice separation.

The potentials of mean force W2 and W3 were calculated for the temperatures corre-
sponding to the widest point of the phase diagram (〈%〉≈ 0:05; kT=U1 ≈ 0:44), and also
for the two temperatures corresponding to the intersections of the dashed line and the
coexistence curve in Fig. 2, at both of which there is the same minority species con-
centration 〈%〉≈ 0:08 (kT=U1 ≈ 0:384 and kT=U1 ≈ 0:513). The eFective Ising coupling
constant is J=kT = 0:47 for the <rst point and J=kT = 0:45 for the next two.
The potentials of mean force for primary–secondary cell occupants is shown in

Fig. 4. The original primary cell and two primary cells that surround the secondary
cell lie on the same lattice vector; the distance between primary and secondary cell
is assumed to be equal to half-sum of the distances between the original and two
neighboring primary cells.
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Fig. 4. Plots of the two-body potential of mean force at kT=U1 = 0:44 for primary–secondary cells (solid
line) and primary–primary cells (dashed line).

Fig. 5. DiFerence between the sum of the three pair potentials and the true three-body interaction,
QW3(r) ≡ 2W2(r) + W2(2r) − W3(r; r; 2r) (solid line), and the pair potential W2(2r) (dashed line), for
the linear con<guration of points and the temperatures kT=U1 = 0:384 or 0:513.

For the three-body potential, we chose the two simplest con<gurations: In the <rst
one, particles 1, 2, and 3 lie on a straight line with the distance r between particles 1
and 2 being equal to the distance between particles 2 and 3. In the second con<guration
particles 1, 2, and 3 form a right triangle in which the legs 1,2 and 1,3 are of equal
length r. We are mainly interested in the question of how well the eFective three-body
interaction is approximated by the sum of the three pair interactions.
In Fig. 5 we present a plot of the diFerence between the sum of the three pair

potentials and the true three-body potential for a linear con<guration, QW3(r) ≡
2W2(r) + W2(2r) − W3(r; r; 2r). Since all potentials W2 and W3 are negative for any
r, one can observe that the sum of the three pair interactions clearly overestimates
(the absolute magnitude of) the true three-body potential. However, unlike in some
one-dimensional models of hydrophobic interactions [6], this overestimate is less (in
absolute value) than the interaction between the furthermost particles, 1 and 3. To
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Fig. 6. DiFerence between the sum of the three pair potentials and the true three-body interaction,
QW3(r) ≡ 2W2(r) + W2(

√
2r) − W3(r; r;

√
2r) (solid line), and the pair potential W2(

√
2r) (dashed line),

for the triangular con<guration of points and the temperatures kT=U1 = 0:384 or 0:513.

show that, a plot of the corresponding two-body potential W2(2r) is presented in the
same Fig. 5.
Similar results for the triangular con<guration of points are presented in Fig. 6.

Here again, as in the linear case, the sum of all pairwise interactions overestimates the
true three-body potential, but, as in the linear case, by less than the magnitude of the
pairwise potential between two most remote points, W2(

√
2r).

4. Correlation length

In this section the correlation lengths for the decorated lattice model are calculated
from those of the underlying Ising model. Before we proceed to the calculation, we
note that the correlation lengths for any pair of species (i.e., 1–1, 1–2, 2–2) are all
identical in this model. The exponential range of correlation for a pair of molecules of
species � and ( occupying the primary cells is de<ned by

1=*�( =− lim
|R|→∞

|R|−1 ln |h�((R)| ; (19)

where h�((R) is the pair correlation function for species � and (. However, all the
pair correlation functions h11,h12, and h22 are expressed as

h�((R) = k�(C(R) ; (20)

where k�(=(2��(−1)=4%�%( with %�=N�=N . Note that C(R) is the two-body connected
correlation function Ci;j de<ned in Eq. (8), but now expressed as a function of R =
Ri −Rj instead of as a function of the primary cell addresses i,j. Since the factor k�(
is independent of R, all the correlation lengths for any pair of species in this model
are identical to the length de<ned by

1=*=− lim
|R|→∞

|R|−1 ln |C(R)| : (21)
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On the other hand, the correlation length for the Ising model is de<ned by

1=* Ising =− lim
|R|→∞

|R|−1 ln |CIsing(R)| : (22)

Therefore the correlation length * for the decorated lattice model is calculated from
*Ising through the transcription given by Eq. (13).
For the Ising model an accurate expression for the correlation length at zero <eld

below Tc is available as a function of exp(−2J=kT ) [7]. Thus, we can calculate * for
the decorated lattice model along the coexistence curve from the upper to the lower
critical solution point. For the simple cubic lattice, the following expression is used:

1
*
=

1
f
cosh−1

(
1 +

f2

2.′
2

)
(23)

or

1
*
=

1
f
ln


1 + f2

2.′
2
+

√(
1 +

f2

2.′
2

)2

− 1


 ; (24)

where for the simple cubic lattice in the direction e0 = (1; 0; 0),

.′
2(x) = x

4 − x6 + 10x8 − 14x10 + 93x12 − 201x14 + · · · and f2 = 1 (25)

and for the same lattice in the direction e1 = (1; 1; 0)=
√
2,

.′
2(x) = x

4 − 3
4
x6 + 9

7
16
x8 − 13

11
32
x10 + · · · and f2 =

1
2
: (26)

The variable x in terms of which .′
2 is expanded is to be understood as A12=

√
A11A22

for the decorated lattice model, instead of exp(−2J=kT ) for the Ising model.
Here, we show the numerical results for the correlation length for the decorated

lattice model of the simple cubic lattice. The results are obtained for various values
for the parameter ! at |U2|=U1=1. Shown in Fig. 7(a) is the behavior of the correlation

Fig. 7. Behavior of the correlation length along the coexistence curve for the decorated lattice-gas model for
various values of ! at |U2|=U1 = 1. The lattice type is the simple cubic and the lattice direction in which
* is calculated is (a) e0 = (1; 0; 0) and (b) e1 = (1; 1; 0)=

√
2. Temperature is in units of U1=k.
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length * in the direction e0 along the coexistence curves as a function of temperature
between the upper and lower critical solution points. For any given !, the correlation
length takes a minimum value at a temperature lower than the midpoint between the
upper and lower critical temperatures. With increasing !, the minimum of the curve
becomes deeper and shifts toward the lower critical temperature. This means that a
larger number of possible orientations ! gives rise to a correlation length that increases
more rapidly as the system approaches the lower critical solution temperature. Similar
results are obtained for the direction e1 as shown in Fig. 7(b).

5. Summary

We have calculated and illustrated the correlations between primary cells for a
decorated-lattice-gas model that exhibits a closed-loop phase diagram. The three-body
potential of mean force was also calculated and compared with the sum of the three
two-body interactions. The calculations are related to those in earlier models of hy-
drophobic interactions and are interpreted in similar terms.
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