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Molecular dynamics simulations demonstrate that there are at least two classes of
quasi-two-dimensional solid water into which liquid water confined between hydrophobic surfaces
freezes spontaneously and whose hydrogen-bond networks are as fully connected as those of bulk
ice. One of them is the monolayer ice and the other is the bilayer solid which takes either a
crystalline or an amorphous form. Here we present the phase transformations among liquid, bilayer
amorphoussor crystallined ice, and monolayer ice phases at various thermodynamic conditions, then
determine curves of melting, freezing, and solid-solid structural change on the isostress planes
where temperature and intersurface distance are variable, and finally we propose a phase diagram of
the confined water in the temperature-pressure-distance space. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1861879g

I. INTRODUCTION

Confined water has been less extensively studied than
bulk water but it is by no means less interesting or less rel-
evant to us. Confined water exists in biological systemsscell
membranes, inner cavities of proteins, etc.d, geological ma-
terials sclays, rocks, etc.d, and synthesized or industrial ma-
terials sgraphitic microfibers with slit pore, inner space of
carbon nanotubes, etc.d. Some biological systems become
unstable or does not function if confined water is removed.
Some important properties of nanostructured materials are
highly sensitive to the presence of confined water.

Phase behavior of a fluid is much richer in inhomoge-
neous systems including confined systems than in the bulk
system: such nonbulk systems may exhibit confinement-
induced freezing and melting, wetting and drying transitions,
and prewetting and predrying transitions. Pioneering and
more recent theoretical studies of simple fluids are illuminat-
ing in understanding those phenomena.1–3 Water is a com-
plex fluid in the sense that its intermolecular interaction
causes hydrogen bonding and so is highly directional. There-
fore its phase behavior in confined geometry can be even
more complex than that expected from the intermolecular
interactions.

Computer simulation has proved to be a powerful theo-
retical tool for studying such complex behavior of confined
water. There are many computational studies on confined
water,4–12 some of the pioneering works date back to 1980s.4

One of the earlier computer simulations focusing on liquid-
solid phase transitions13 showed that water between hydro-
phobic surfaces freezes into a bilayer form of crystalline ice
when temperature is lowered under a fixed normal pressure.
Structure of the bilayer ice is different from any of the 12
bulk ices but each molecule is hydrogen bonded to its four
neighbors as it is in the bulk ices. A few years later it was
shown that water confined in a rigid hydrophobic slit pore
freezes into the bilayer amorphous solid when temperature is

decreased at a fixed lateral pressure.14 This phase change is
unique in that freezing to and melting of the amorphous solid
occur as a first-order phase transition accompanying a large
amount of latent heat and structural change. This is an un-
ambiguous demonstration of polyamorphism involving liq-
uid water by computer simulation. The freezing and melting
are also observed by changing the distance between surfaces
at fixed temperature and fixed lateral or bulk pressure, a re-
sult of which is a discontinuous force curve with hysteresis.15

More recently spontaneous formation of a monolayer ice was
found by molecular dynamicssMDd simulations of the
TIP5P model water.16

Quasi-one-dimensional water, too, exhibits phase transi-
tions qualitatively different from those of the bulk water. The
first evidence for such transitions was again obtained from
MD simulations combined with free-energy calculations: the
simulations demonstrated that water inside a carbon nano-
tube freezes into four different forms of the ice nanotube, a
class of quasi-one-dimensional crystalline ices.17,18 The pre-
dicted formation of the ice nanotube was confirmed by ex-
periments of Maniwaet al.19

The structure, dynamics, and thermodynamic properties
of confined water depend on many factors such as confining
geometry and physical and chemical properties of surfaces,
and the effect of each factor is as yet little understood. Thus
it is sensible to choose and study, among many possibilities,
model systems with simpler geometriesse.g., slit and cylin-
drical poresd and simpler surfacesse.g., structureless sur-
facesd. Even such simpler systems give rise to at least one
additional thermodynamic parameter for specifying a ther-
modynamic state. Full understanding of the phase behavior
of confined water with a given geometry requires exploration
of a three-dimensional thermodynamic spacese.g., theTPx
space, wherex is a geometrical parameter such as diameter
of the pore or separation distance of two surfacesd. Here we
focus on the quasi-two-dimensional system and examine the
phase behavior of water in ranges of the thermodynamic con-
ditions much wider than we have done before.adElectronic mail: koga@cc.okayama-u.ac.jp
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II. SYSTEM AND CONDITIONS

As shown in Fig. 1, the model system comprisesN mol-
ecules in a regular rectangular prism with the dimensions
Lx3Ly3H in the x, y, andz directions. Periodic boundary
conditions are imposed on thex and y directions and two
parallel planner walls placed at the top and bottom faces of
the prism confine all the molecules between them. The po-
tential energyU of the system is defined as a sum of the
potential energy among water molecules and that of the
water-wall interaction, both being pair-wise additive:

U = o
i=1

N−1

o
j=i+1

N

fsr ijd + o
k=1

2

o
i=1

N

vszikd, s1d

where f is the TIP4P water potential20 multiplied by the
switching function that smoothly truncates the potential at
rc=8.75 Å;21 its argumentr ij represents the relative configu-
ration of moleculesi and j including their orientations. The
pair potentialv between moleculei and wallk is a function
only of the distancezik from the wallsthe top or base face of
the prismd to the position of the oxygen atom of the mol-
ecule:

vszikd = C9/zik
9 − C3/zik

3 . s2d

This Lennard-JonessLJd 9-3 potential22 results from the LJ
12-6 potential integrated over infinite volume of each wall
with a uniform density. The parametersC9 andC3 are those
chosen for the interaction between a water molecule and a
“hydrophobic” solid surface.5 The potential functionvszd is
zero at the distancez0=sC9/C3d1/6=2.47 Å and rapidly in-
creases at shorter distances. In Fig. 1 the dotted lines indicate
the surfaces of zero energyfvszd=0g with a distanceh apart
whereas the top and base faces of the prism indicate the
surfaces of infinite energy with a distanceH apart. NoteH
−h=2z0. We takeh to be the effective width for water and
V=Ah to be the effective volume of water, whereA=LxLy is
the area of the bases. Note that one must define, in one way
or the other, the effective width or volume as they are not
uniquely defined for microscopic wall-wall separation. With
the present definition of the effective widthh, water may
have a monolayer structure ifh,0, a bilayer structure ifh
,s, and so on, wheres is the molecular “diameter” of
water.

MD simulations in the isothermal and isostress ensemble
or NPxxs=PyydT ensemble are performed, wherePxx andPyy

are the components of pressure tensor normal to theyz and
xz planes, respectively, to which we shall refer as the lateral
pressure, andT is the temperature. This ensemble is not isos-

tress to the componentPzz of pressure tensor normal to the
walls, for the effective widthh is kept fixed. The isothermal-
isostress MD simulation is more efficient than other MD
simulations in examining phase behavior and phase transi-
tions of a liquid confined in a rigid slit pore. Implementation
of theNPxxs=PyydT ensemble simulation is a straightforward
extension of the standard isothermal-isobaric MD
simulation;23 here the lateral dimensionsLx and Ly vary in
response to the corresponding lateral pressures being kept
fixed at a given value while the widthh is kept fixed.

A thermodynamic state of the one-component system is
specified by three variables, which are taken to beT, h, and
Pxx. Our main goal is to reveal the phase behavior of con-
fined water in a part of the three-dimensional thermodynamic
space, in which both the bilayer and monolayer solid phases
are involved. To this end we choose two isostress planes,
Pxx=200 MPa andPxx=0.1 MPa, and apply the MD simula-
tion at thermodynamic states corresponding to grid points of
a square net within a rectangular region of 200KøT
ø270 K and 1.3 Åøhø6.0 Å for each isostress plane. Fig-
ure 2 shows the two rectangular regions. Neighboring grid
points are 0.1 Å or 0.2 Å apart forh and 5 or 10 K apart for
T. In addition, thermodynamic states ath=7,8, . . . ,20 Å and
at Pxx=0.1 MPa andT=200 K are examined.

The numberN of molecules is taken to be 240 for the
states withhø10 Å and 480 otherwise; then the lateral di-
mensionsLx and Ly of the simulation box are larger than
30 Å at any examined conditions. The Gear predictor-
corrector method is employed for solving the equation of
motion with a time step of 0.5 fs.

The following procedure is taken to determine the melt-
ing and freezing curves on each of the two isostress planes.
First we perform preliminary MD simulations to find out
some values ofh at which the liquid water spontaneously
freezes into the monolayer ice or into the bilayer amorphous
ice whenT decreases from 270 K to 200 K. Then we choose
one of such states as a starting pointse.g.,h=1.5 Å andT
=200 K for the monolayer ice phased. Second we perform
MD simulations of 10 ns each at the neighboring grid points
using a final configuration of molecules at the starting point
and then check the structure, the potential energy, and other
properties. In most cases it is easy to judge whether the sys-
tem undergoes a phase change or remains in the same state at

FIG. 1. Schematic diagram of the system.

FIG. 2. Isostressh-T planes in which phase behavior of confined water is
examined.
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a given condition; otherwise we extend the simulation up to
100 ns at the same condition. The second step is repeated by
encompassing the grid points until the solid phase melts or
transforms into the other solid phase. This set of MD simu-
lations determines the melting curvesor the stability limitd of
the solid phase. Once the melting curves are obtained it is
easy to find the freezing curves. The system in a liquid state
at the melting point at givenh is cooled by 5 K and is ex-
amined if it freezes at that temperature within 20 ns. If there
is any sign of freezing the MD simulation is extended until
the system freezes completely; if there is no sign of freezing,
the temperature is further decreased in steps until spontane-
ous freezing is observed. This set of MD simulations are
done at each value ofh in the grid points. At some values of
h the liquid water never freezes at and above 200 K. Then
the value ofh is increased or decreased in steps at that tem-
perature until the system freezes spontaneously. From these
MD simulations the freezing curves are determined at each
isostress plane.

It is worthwhile here to make some remarks on the em-
ployment of the TIP4P model for water-water interaction and
the LJ 9-3 model for the water-wall interactions. The bilayer
ice and the bilayer amorphous have been obtained from the
simulations of the ST2 and TIP5P models.24 As mentioned
earlier the monolayer ice has been obtained from the TIP5P
water.16 The LJ 9-3 potential for the water-wall interaction
ignores any atomic structure of the walls, but it was con-
firmed from our earlier simulations that a potential function
representing structure of hydrophobic surfaces gives rise to
the same structure of the bilayer ice.sNote in the case the
normal pressure is fixed.d Therefore, the results presented
below would not be qualitatively altered by use of other
reasonable potential models for water and hydrophobic sur-
faces.

III. THERMODYNAMICS FOR THE CONFINED SYSTEM

Thermodynamic identities for the one-component sys-
tem having the quasi-two-dimensional geometry under the
NPxxT ensemble are summarized here. For the thermody-
namics of confined fluids in an open environment the reader
should refer to the paper by Evans and Marini Bettolo
Marconi.1

The infinitesimal change in the internal energyU of the
confined systemfFig. 1g is written as

dU = TdS− APzzdh− PxxhdA+ mdN, s3d

and whenN, Pxx, h, andT are fixed the natural choice of the
thermodynamic potential is

F = U + AhPxx − TS. s4d

Then its differential is given by

dF = − SdT− ADPdh+ AhdPxx + mdN, s5d

whereDP=Pzz−Pxx. From the general condition

dTdS− dsAPzzddh − dshPxxddA + dNdm ù 0 s6d

for the stability of this system, we find

s]APzz/]hdPxx
+ Pxxs]A/]hdPxx

ø 0, s]A/]Pxxdh ø 0 s7d

with fixed T and N, in addition to s]S/]Tdh,Pxx,N
ù0 and

s]m /]NdT,Pxx,h
ù0. These conditions determine the signs of

the second derivatives ofF:

]2F/]T2 ø 0, ]2F/]Pxx
2 ø 0, ]2F/]N2 ù 0;

however they do not determine the sign of]2F /]h2 or
s]ADP/]hdPxx

. Indeed, from the first inequality in Eq.s7d,

s]ADP/]hdPxx
ø − 2Pxxs]A/]hdPxx

,

the right-hand side of which can be either positive or nega-
tive.

SinceF is a homogeneous first-order function ofN with
fixed T, h, andPxx, integrating Eq.s5d gives

F = mN. s8d

This combined with Eq.s5d results in the Gibbs–Duhem
equation for the confined system:

dm = − sdT− aDPdh+ vdPxx, s9d

where s=S/N, a=A/N, and v=Ah/N=V/N. Then we find
from Eq. s9d the following Maxwell relations: for a fixed
lateral pressurePxx,

S ]s

]h
D

Pxx,T
= S ]aDP

]T
D

Pxx,h
, s10d

for a fixed widthh,

S ]s

]Pxx
D

h,T
= − S ]v

]T
D

h,Pxx

, s11d

and for a fixed temperatureT,

S ]v
]h
D

T,Pxx

= − S ]aDP

]Pxx
D

T,h
. s12d

Equilibrium conditions for any two distinct phasesa andb
under theNPxxT ensemble areTa=Tb, ma=mb, and Pxx

a

=Pxx
b . Note that in generalPzz

a ÞPzz
b at equilibrium.

A two-phase boundary of the present system is a surface
in the three-dimensional thermodynamic space, and the
slopes of the surface at fixedh, T, andPxx are given, respec-
tively, by

S ]T

]Pxx
D

h
=

va − vb

sa − sb , s13d

S ]Pxx

]h
D

T
=

saDPda − saDPdb

va − vb , s14d

and

S ]h

]T
D

Pxx

= −
sa − sb

saDPda − saDPdb , s15d

which are the Clapeyron equations for the two-phase bound-
aries in the quasi-two-dimensional system. The triple point at
which three phasesa, b, andg are in equilibrium is a triple
“line” in the three-dimensionals3Dd thermodynamic space.
Sincedma=dmb anddmb=dmg along the triple line and each
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dm is given by Eq.s9d, the direction of the triple line is
uniquely determined. LetD1x andD2x denote the differences
xa−xb and xb−xg, respectively, for any quantityx of each
phase. Then the direction of the triple line is expressed as

dT

dPxx
=

D1vD2saDPd − D2vD1saDPd
D1sD2saDPd − D2sD1saDPd

s16d

and

dh

dPxx
=

D1vD2s− D2vD1s

D1sD2saDPd − D2sD1saDPd
. s17d

This is a set of Clapeyron equations for the triple line.
The Clapeyron equations can be used to check the re-

sults of MD simulations and, when combined with them,
provide an effective route to determination of the two-phase
boundaries and the triple line in the 3D thermodynamic
space.

IV. FORMATION AND STRUCTURE
OF MONOLAYER ICE

Apart from a single MD simulation at each of the grid
points to determine phase boundaries, ten independent MD
simulations at a representative thermodynamic pointsh
=2.3 Å, T=250 K, andPxx=200 MPad are performed to ex-
amine formation and structure of the monolayer ice. Initial
configurations of water molecules are those of liquid water at
270 K with the sameh and Pxx and a trajectory of 30 ns is
generated in each simulation and if freezing is observed it is
extended by 20 ns. It is found that the probability of freezing
into the monolayer ice within 30 ns is 80%. The phase
change accompanies significant decrease in the potential en-
ergy. The average potential energy of the “metastable” liquid
state is −36.9 kJ/mol whereas that of the low-energy phase
is −41.6 kJ/mol.sThe latter value is the average over the last
20 ns of a single trajectory of 50 ns.d The decrease in poten-
tial energy, 4.7 kJ/mol, is as large as 80% of the latent heat
of ice Ih.

The “lateral” radial distribution functionsgoosrds for
oxygen atoms of the inherent structures are plotted in Fig. 3,
wherer =ÎsDxd2+sDyd2 with Dx andDy being the difference
in thex andy coordinates of two oxygen atoms. The inherent
structure is a potential-energy local minimum structure ob-
tained by applying the steepest descent method to an instan-
taneous structure generated from an MD simulation. It is
often more convenient to use the inherent structure for struc-
tural analyses than the instantaneous structure because fluc-
tuations due to thermal motions are absent in the former. It is
clear that the liquid phase does not have a long-range order
even in the inherent structure whereas the monolayer ice
phase does have sharp peaks and valleys in the entire range
of r. In the monolayer ice phase the first and second peaks of
goosrd correspond to hydrogen-bonding pairs of oxygen at-
oms whereas in the liquid phase only the first peak corre-
sponds to hydrogen-bonding pairs. The first and second
peaks for the monolayer ice are located at 2.3 and 2.8 Å,
respectively, and some of other peaks are found at distances
of multiples of 2.3 Å and those of 2.8 Å. The transverse
distance of 2.8 Å is close to and that of 2.3 Å is much

shorter than the typical distance of a hydrogen-bonding pair
of oxygen atoms. This indicates that one type of the hydro-
gen bonds is nearly parallel to the walls and the other forms
an angle with the walls.

We define here the hydrogen bond in the inherent struc-
ture such that a pair of molecules is hydrogen bonded with
each other if the pair potential energyf is less than
−12 kJ/mol. Then it is found that each molecule in the
monolayer ice phase is bonded with its four nearest neigh-
bors, with some exceptions, as in ice Ih. What seems to be
unique for the monolayer ice is that the distribution of the
hydrogen-bond energy has four distinct peaks as shown in
Fig. 4. They are located at −24.6, −22.6, −18.0, and
−14.6 kJ/mol.

FIG. 3. The lateral radial distribution functions for oxygen atoms of the
inherent structure:sad liquid and sbd monolayer ice, both of which are ob-
tained from the instantaneous structures atT=250 K, Pxx=50 MPa, andh
=2.3 Å.

FIG. 4. Distribution of the hydrogen-bond energy in the monolayer ice
sobtained from the same inherent structures as in Fig. 3.
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Figure 5 shows an inherent structure of the high-energy
phase and that of the low-energy phase. It is clear from the
pictures taken from a direction normal to the wallsfFigs.
5sad and 5sbdg that the high-energy phase is a liquid with a
disordered hydrogen-bond network whereas the low-energy
phase is a monolayer crystalline solid with a nearly perfect
network. The in-plane structure of the monolayer ice looks
like a rectangular net: each node of the net has an oxygen
atom and each bond has a hydrogen atom, and the ice rule is
satisfied over the entire net except some points of defects.
This is essentially realization of the two-dimensional ice
model,25 which has been studied as one of exactly solvable
models in statistical mechanics, not as a realistic model of
two-dimensional ice. The structure of monolayer ice is, how-
ever, not exactly two-dimensional: a viewfFig. 5scdg from an
acute angle to the walls shows a puckered structure of the
monolayer. The straight rows forming ridges and valleys of
the puckered structure have the horizontal hydrogen bonds.
The zigzag rows crossing over the folds have the hydrogen

bonds tilting with respect to the walls. The distribution of the
hydrogen-bond length has two peaks centered at 2.74 Å and
2.83 Å and the former corresponds to the horizontal bonds
and the latter to the tilting bonds.

Any ice form in which the molecular structure of water
remains intact satisfies the ice rule to have a perfect
hydrogen-bond network; the monolayer ice is not an excep-
tion. If there are no other restrictions on the proton arrange-
ment, the residual entropy of the monolayer ice would be
exactly the same as that of the two-dimensional ice model:
k lns4/3d3/2, which is the exact value obtained by Lieb.25

However, there is obviously some restrictions other than the
ice rule. First, two protons of each molecule cannot partici-
pate in the two hydrogen bonds along the straight row at the
same time because the hydrogen-bond angle 180° is far
greater than the HOH angle. Second, they also cannot par-
ticipate in the two bonds along the zigzag row at the same
time because a perfect hydrogen-bond network containing
such molecules must also contain molecules violating the
first rule. Consequently each molecule has four possible ori-
entations in each of which one of its proton participates in
one of the two hydrogen bonds along the straight row and the
other participates in one of the two bonds along the zigzag
row. Then there are only two possible arrangements for a set
of all protons on each row. The number of such rows are
2ÎN provided the number of straight rows and that of the
zigzag rows are the same. Therefore the residual entropy is

S= k ln 22ÎN, s18d

which is subextensive and thereforeS/N goes to zero in the
thermodynamic limit. It should be noted that Pauling’s ap-
proach to the residual entropy of ice is an approximationsan
excellent approximation for ice Ihd but it may lead to a
wrong result for some ices. For example, the two-
dimensional ice model, which has no restrictions on its pro-
ton arrangement other than the ice rule, would have exactly
the same residual entropy as that of ice Ih if it is evaluated by
Pauling’s method; but we know the former isk lns4/3d3/2 and
the latter is nearly equal tok lns3/2d. For the monolayer ice,
which has additional restrictions on the proton arrangement,
Pauling’s method gives rise to a “negative” residual entropy:
k ln W with W,1, which is irrational.16 But because of the
additional restrictions one can countW exactly with no effort
as given in Eq.s18d.

The monolayer ice obtained from any reasonable inter-
molecular potential model of water, or the real one yet to be
discovered, would satisfy the ice rule and the additional re-
strictions. But whether any further restriction applies or not
may be model dependent and should wait for experimental
observation. In the case of the TIP4P modelswith the switch-
ing functiond the monolayer ice resulting from spontaneous
freezing tends to have a structure in which the two possible
arrangements, say A and B, for a set of protons in each row
appear regularly as AABB̄ , as shown in Figs. 5sbd and
5scd. The simulation of the TIP5P water predicted the AAAA
structure.16

Figure 5scd shows the strength of each hydrogen bond
dividing into four energy levels: strongestsf,−30.0d, stron-
ger s−30.0,f,−23.6d, weaker s−23.6,f,−16.0d, and

FIG. 5. Inherent structures ofsad the high-energy phase,sbd the low-energy
phase, andscd the low-energy phase viewed from an acute angle to the
walls.
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weakests−16.0,fd, all in units of kJ/mol. Half the tilting
bonds along the zigzag rows are the strongest hydrogen
bondssblue bonds in the figured and the other half are the
weaker bondssyellowd; half the horizontal bonds along the
straight rows are the stronger bondssgreend and the other
half are weakest bondssredd. It is clear from the figure that
the four energy levels of hydrogen bondssshown in Fig. 4d
correspond to four relative orientations of bonding pairs. The
strongest bonds connect two neighboring straight rows one
of which is in state A and the other is in state Bsthe same A
and B defined aboved, so the dipole-dipole interaction of
each pair is energetically favorable. On the other hand, the
weaker bonds connect two neighboring straight rows both in
state A or B, so the dipole-dipole interaction is unfavorable.
Similarly, the weakest bonds connect two neighboring zigzag
rows both in state A or B and thus each bonding pair has the
same orientationsso the higher interaction energyd while the
stronger bonds connect two zigzag rows in states A and B
and so the dipole-dipole interaction is more favorable. This
completes structural analyses of the monolayer ice.

V. FREEZING, MELTING, AND STRUCTURAL CHANGE

A large number of MD simulations performed at grid
points on an isostress plane, each starting from a liquid state,
reveal a series of points at which liquid water freezes spon-
taneously. That is, a freezing curve in theh-T plane is ap-
proximately identified by this procedure. Likewise, MD
simulations at grid points starting from a solid state identify
a melting curve of that solid in theh-T plane.

Figure 6sad shows freezing points in the isostress plane
of 200 MPa. It is clearly shown that there are two separate
domains in which spontaneous freezing takes place; the re-
sulting phase is the monolayer ice in the domain located at
smaller-h side and the bilayer amorphous solid in the other
domain at larger-h side. The domain of the bilayer phase is
significantly larger than that of the monolayer ice. The high-
est freezing point is 270 K ath between 3.4 and 3.6 Å for
the bilayer solid whereas it is 250 K ath between 2.1 and
2.3 Å for the monolayer ice. At 200 K, the range ofh of the
bilayer domain is twice as widesf2.8 Å,4.8 Ågd as that of
the monolayer domainsf1.4 Å,2.4 Ågd. There is a gap be-
tween the two domains, ranging from 2.5 to 2.8 Å at 200 K,

where the confined water remains to be a liquid even at
200 K. sStrictly speaking, freezing is not observed in the MD
simulation of 100 ns.d

In Fig. 6sbd displayed are a series of melting points for
the monolayer ice and that for the bilayer amorphous phase
in the same isostress plane as in Fig. 6sad. The domain under
the melting “curve” is again larger for the bilayer phase than
for the monolayer ice phase; the highest melting point is
280 K ath between 3.2 and 3.8 Å for the bilayer amorphous
and 270 K ath between 2.3 and 2.4 Å for the monolayer ice.
In some cases the bilayer amorphous phase does not melt but
transforms itself into the bilayer crystal in the course of rais-
ing temperature at fixedh se.g., 270 K at 3.2 or 3.8 Åd. It is
also found that the two melting curves cross at around
sh,Td=2.6 Å, 230 K and thus there is an overlap of the
monolayer ice and bilayer amorphous domains. Indeed, the
system undergoes the structural change from the bilayer
amorphous to the monolayer ice at 2.4 Å, 200 K and at
2.5 Å, 220 K and the reverse structural change at 2.8 Å,
200 K.

Figure 7 shows freezing points and melting points in the
isostress plane of 0.1 MPa. The freezing and melting curves
are similar to those at 200 MPa. However, several systematic
deviations are caused by the change of the lateral pressure
Pxx. First, both the freezing and melting points of the mono-
layer ice decreases with decreasing pressure whenh is less
than 2.4 Å. The highest freezing point is 240 K and the high-
est melting point is 260 Ksboth at 2.3 Åd, which are both
lower than those at 200 MPa. Second, although the highest
freezing point and the highest melting point of the bilayer
amorphous phase are nearly independent of the pressure,
both freezing and melting points ath.3.8 Å increase with
decreasingPxx; the largest possibleh for the spontaneous
freezing at 200 K increases from 4.8 to 5.4 Å with decreas-
ing Pxx from 200 to 0.1 MPa. We again observe that in some
cases the bilayer amorphous phase does not melt but trans-
forms itself into the bilayer ice phase in the heating process.
As observed at 200 MPa, the melting curves of the mono-
layer ice and the bilayer amorphous phases cross and the
structural transformation between two solid phases takes
place.

Summing up the effects of pressure shown in Figs. 6 and

FIG. 6. Diagrams of spontaneous freezingsad and meltingsbd observed in
the h-T plane atPxx=200 MPa.

FIG. 7. Diagrams of spontaneous freezingsad and meltingsbd observed in
the h-T plane atPxx=0.1 MPa.

104711-6 K. Koga and H. Tanaka J. Chem. Phys. 122, 104711 ~2005!

Downloaded 16 Mar 2005 to 128.253.229.205. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



7, the domain of the monolayer ice in theh-T plane shrinks.
In contrast, the domain of the bilayer amorphous solid ex-
pands with decreasing pressure.

VI. PHASE EQUILIBRIA OF CONFINED WATER

Let now a, b, and g stand for the liquid phase, the
bilayer amorphous phase, and the monolayer ice phase, re-
spectively. The direct observation of melting and freezing
transitions of the confined water allows us to narrow down
thea-b anda-g two-phase equilibriumT at givenh andPxx

or equilibriumh at givenT andPxx. Uncertainty in the equi-
librium T sor hd is the difference inT sor hd between the
point of spontaneous freezing and that of spontaneous melt-
ing. It is found that the smallest uncertainty inT is only 5 K,
the same as the smallest incrementsor decrementd in T cho-
sen in the MD simulations, and the smallest uncertainty inh
is 0.1 Å. The uncertainty is relatively large when two phases
are expected to coexist at lowT, for the lower the tempera-
ture the lower the nucleation rate of a new phase.

In some cases, we can still reduce the uncertainty from
thermodynamic requirement. For example, let us look at the
point: h=2.55 Å, T=200 K, andPxx=200 MPa, where nei-
ther spontaneous freezing of the liquid nor spontaneous melt-
ing of the monolayer ice is observed. From Eqs.s4d and s8d
ma−mb=ca−cb−Tssa−sbd with c=sU+AhPxxd /N, the
quantity corresponding to the enthalpy per molecule for the
bulk system. Bothca andcb are directly obtained from MD
simulations, and we findca−cb,0 at this particular point.
But at the same time we knowsa−sb.0. Thereforema

,mb, i.e., the liquid must be the stable state at this point.
Since the liquid freezes atT=220 K andh=2.5 Å, we may
conclude that the true equilibriumh at 200 K and 200 MPa
is between 2.50 and 2.55 Å, the uncertanity being only
0.05 Å.

In order to determine the two-phase boundaries in each
isostress plane and ultimately the two-phase surfaces in the
3D thermodynamic space, 12 points are chosen as represen-

tative a-b anda-g equilibrium states. Each point is either a
melting point, a freezing point, or a midpoint between melt-
ing and freezing points.

Then the differences inu, s, v, and aDP between two
phases are evaluated at these points. The entropy difference
Ds is given asDc /T=Du+PxxDv with the assumption that
Dm=0 at these points. The results are shown in Table I. By
Eqs.s13d–s15d, the slopes of the phase boundaries are related
with the ratio of differences ins, v, andaDP between two
coexisting phases. Evaluated values of the slopess]T/]Pxxdh,
s]Pxx/]hdT, ands]h/]TdPxx

at the 12 points are also listed in
Table I. Phase boundaries in theh-T planes are determined
by interpolating the 12 points with the information of
s]h/]TdPxx

at these points.

VII. PHASE DIAGRAMS IN THE h-T PLANE

Figure 8 shows the phase diagrams at 200 MPa and
0.1 MPa. The phase diagrams and Table I give significant
amount of information. The first and obvious is that the do-
main of the bilayer amorphous solid phaseb at a given pres-
sure is larger than that of the monolayer solid phaseg at that
pressure, as we have seen in Figs. 6 and 7. The domain of the
g phase becomes smaller while that of theb phase becomes
larger with decreasingPxx from 200 MPa to 0.1 MPa, and so
the size difference between the two domains is pronounced
at the ambient pressure.

The second is that the width of each loop, i.e., the range
of h in which each solid is the stable phase, monotonically
shrinks with increasingT and eventually disappears at the
highest melting temperature of that solid phase. More pre-
cisely, the slope of each loop is always positive on the
smaller-h side and always negative on the larger-h side.
Since the slope is given by Eq.s15d and the entropy differ-
encesliq −ssol between liquid and solid phases in equilibrium
is always positive, the slope is positivesnegatived if
saDPdliq −saDPdsol is negative spositived. Table I shows
saDPdliq −saDPdsol is positive on the larger-h sidesspoints C,
F, I, and Ld and negative on the smaller-h sidesspoints A, D,

TABLE I. Phase equilibria amonga sliquid waterd, b sbilayer iced, andg smonolayer iced. Thermodynamic
quantities are evaluated at representative points A, B, C, D, E atPxx=200 MPa and F, G, H, I, J atPxx

=0.1 MPa. DifferenceDx at thek-l equilibrium is defined asxk−sl, wherex=u,s, . . . andk ,l=a ,b ,g. h is in
units of Å, T in units of K, u in units of kJ mol−1, s in units of J mol−1 K−1, v in units of Å3, andaDP in units
of Å2 MPa.

Point sh, Td Equilibrium Du Ds Dv DsaDPd ]T/]Pxx ]Pxx/]h ]T/]h

A s1.4, 210d a-g 3.45 17.2 1.33 −3.283103 0.0466 −2.473103 115
B s2.3, 260d a-g 5.29 21.2 1.76 531 0.0502 3.023102 −15.1
C s2.5, 230d a-g 1.16 4.30 −1.39 5.483103 −0.195 −3.943103 −767
D s2.8, 240d a-b 3.46 14.7 0.496 −3.243103 0.0204 −6.543103 133
E s3.6, 270d a-b 3.93 14.2 −0.753 413 −0.0319 −5.493102 −17.5
F s4.6, 220d a-b 2.24 8.84 −2.47 1.203103 −0.169 −4.843102 −81.5

G s1.4, 200d a-g 3.60 18.0 1.38 −2.743103 0.0462 −1.983103 91.6
H s2.3, 245d a-g 5.43 22.2 2.36 99.2 0.0640 4.213102 −2.69
I s2.5, 240d a-g 4.05 16.9 1.01 1.843103 0.0360 1.833103 −65.9
J s2.8, 220d a-b 2.00 9.11 0.976 −3.943103 0.0645 −4.043103 261
K s3.6, 270d a-b 4.12 15.2 −0.157 194 −0.0062 −1.243103 −7.66
L s4.6, 245d a-b 3.84 15.7 −1.46 906 −0.0559 −6.223102 −34.8
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G, and Jd. The same results would be expected for any quasi-
two-dimensional system that exhibits liquid-solid phase tran-
sitions under low or moderate lateral pressure. To see this, let
fz be a normal force per molecule acting on the wall. IfPxx is
small compared toPzz in the liquid or solid phase, which is
always the case in our simulations,saDPdliq −saDPdsol. fz

liq

− fz
sol. The phase change caused by decreasingh sso increas-

ing fzd should be in the direction that reduces the stress, i.e.,
decreasesfz. Thus, fz

liq − fz
sol.0 on the larger-h side of the

liquid-solid boundary whereasfz
liq − fz

sol,0 on the smaller-h
side. It is, therefore, generally expected for the system under
low or moderate lateral pressure that the slope]T/]h of a
solid-liquid phase boundary is always positive on the small-
h side and is always negative on the other side. It is now
clear that each loop is smooth everywhere including the
point where the small-h and large-h phase boundaries meet at
the highest melting temperature.fThe shape of theb loop
has been inferred from our earlier MD simulationsssee Fig.
6b in Ref. 15d.g At the highest melting point, where]T/]h
=0, saDPdliq =saDPdsol fEq. s15dg and in particularfz

liq = fz
sol if

Pzz@ Pxx.
The third is that the slope is much steeper on the inner

side of each loop where theb andg domains face each other
than on the outer side of each loopsthe left side of theg
domain and the right side of theb domaind, which is again
clearly shown in Fig. 8. The reason is less obvious and dif-
fers in the two cases. Steepness of the slope is determined by
the magnitudes ofDs and DsaDPd. As to the b loop,
uDsaDPdu is much larger on the inner side than on the outer
side while Ds differs very little on both sidesscompare
points D and F or J and L in Table Id, which is the reason of
the steeper slope on the inner side. As to theg loop, on the
other hand, the reason is thatDs is much smaller on the inner
side than on the outer side whileuDsaDPdu is more or less the
same on both sidesscompare A and B in the tabled. Because

of their steep slopes, thea-b and a-g phase boundaries on
the inner sides do not meet in the temperature range above
200 K, i.e., the temperature of thea-b-g triple point sat
0.1 MPa and 200 MPad is lower than 200K. The reason that
the system undergoes theb-g structural change above 200 K
at 0.1 and 200 MPa is that at such temperatures the meta-
stable region of the bilayersmonolayerd solid phase extends
beyond the region of the liquid phase to the region of the
monolayersbilayerd solid phase.

Figure 9 shows the normal pressurePzz acting on the
walls as a function ofh at fixedT seither 260 or 240 Kd and
fixed Pxx s0.1 MPad. At 260 K, the force curve exhibits a
pair of discontinuities, between which the system is in the
bilayer ice phaseb and otherwise in the liquid phasea. The
normal pressurePzz increases monotonically and rapidly
with decreasingh when the system is in the solid phase
whereas the curve ofPzz shows a local maximum and mini-
mum reflecting layering structure of the liquid. Note that the
magnitude ofPzz is much greater than that of fixedPxx, as
mentioned above. Along the isothermal pass of 240 K, the
force curve exhibits another pair of discontinuities between
which the system is in the monolayer ice phase, and now the
range where the system is in the bilayer ice phase is wider
than at 260 K. These results are consistent with the phase
diagram shown in Fig. 8sbd.

VIII. GLOBAL PHASE DIAGRAM

Table I and Fig. 8 suggest that pressure dependence of
the solid-liquid phase equilibria is simple and small. Thus a
global phase diagram, i.e., a three-dimensional diagram in

FIG. 8. Phase diagram of confined water:sad Pxx=200 MPa andsbd Pxx

=0.1 MPa. The symbolsa, b, andg indicate the liquid, bilayer solid, and
monolayer solid phases, respectively.

FIG. 9. Normal pressurePzz on the walls as a function ofh: sad 260 K and
sbd 240 K. The lateral pressurePzz is fixed at 0.1 MPa.
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the Pxx-h-T space, is obtained with reasonable accuracy by
simply interpolating phase diagrams at the two isostress
planessPxx=0.1 and 200 MPad, using derivatives of the equi-
librium T or h with respect toPxx. The resulting surfaces of
the phase boundaries are displayed in Fig. 10.

It is found that thea-b equilibrium T at h=4.6 Å de-
creases with increasingPxx slike the melting curve of ice Ihd,
whereas the equilibriumT at h=2.8 Å increases with in-
creasingPxx slike the melting curve of most solidsd. This is
because the confined water expands as it freezes into the
bilayer solid on the large-h side of theb domain but it
shrinks at the small-h side. Thea-g equilibrium T at h
=2.5 Å initially increases with increasingPxx before reach-
ing its maximum and then decreases, which reflects the pres-
sure dependence of the volume change on the large-h side of
the g domain. On the small-h sidesh=1.4 Åd, thea-g equi-

librium T monotonically increases with increasingPxx be-
cause water shrinks as it freezes on that side.

The a-b equilibrium h at 200 K decreases monotoni-
cally with increasingPxx on both the branches of the phase
boundary. This is becauseDv and DsaDPd have opposite
signs in any case. The dependence onPxx is noticeable on the
large-h branch but it is practically undetectable on the small-
h branch. Thea-g equilibrium h at 200 K is very weakly
dependent onPxx on both branches of the boundary.

IX. CONCLUDING REMARKS

A phase diagram of water confined in a hydrophobic slit
pore is obtained based on extensive MD simulations com-
bined with the Clapeyron equations for the quasi-two-
dimensional system. There are two solid phases, the mono-
layer ice and the bilayer amorphoussor crystallined ice, as
well as a liquid phase in a small range of the effective width
s0 Å,h,6 Åd above 200 K. The liquid-solid phase bound-
aries of the two solids are convex curves with respect toh in
the isostressh-T planessFig. 8d and convex surfacessagain
with respect tohd in the three-dimensionalPxx-h-T space
sFig. 10d. It is explained based on a general argument why
the solid-liquid phase boundary on the large-h side of each
loop has always a negative slope and that on the small-h side
has always a positive slope.

The monolayer ice has a smaller domain than the bilayer
solid in a given isostress plane but the difference in domain
size becomes smaller as the lateral pressure is increased from
0.1 to 200 MPa. The highest melting temperature is around
260 and 270 K for the monolayer and bilayer solid, respec-
tively, and the range ofh where each solid phase can be
stable is of the order of subnanometer at lower temperatures.
These conditions for the formation of monolayer and bilayer
solids of water can well be achieved and controlled in the
surface force apparatus, atomic force microscopy, or other
modern experiments.

Structural analyses of the monolayer icesobtained from
the TIP4P modeld show that there are four kinds of hydrogen
bonds regularly arranged in the crystalfFig. 5scdg. The re-
sidual entropy of the monolayer ice differs from that of the
2D ice model and is exactly given by Eq.s18d, which is
subextensive. No freezing transition is observed, i.e., liquid
water remains stable, in the range of 6 Å,h,20 Å at
200 K and 0.1 MPa within the time scale of simulations
se.g., 30 nsd.
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