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Phase diagram of water between hydrophobic surfaces
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Molecular dynamics simulations demonstrate that there are at least two classes of
quasi-two-dimensional solid water into which liquid water confined between hydrophobic surfaces
freezes spontaneously and whose hydrogen-bond networks are as fully connected as those of bulk
ice. One of them is the monolayer ice and the other is the bilayer solid which takes either a
crystalline or an amorphous form. Here we present the phase transformations among liquid, bilayer
amorphougor crystalling ice, and monolayer ice phases at various thermodynamic conditions, then
determine curves of melting, freezing, and solid-solid structural change on the isostress planes
where temperature and intersurface distance are variable, and finally we propose a phase diagram of
the confined water in the temperature-pressure-distance spa2@0® American Institute of
Physics [DOI: 10.1063/1.1861879

I. INTRODUCTION decreased at a fixed lateral presstfr&his phase change is

fined has b | ivel died th unique in that freezing to and melting of the amorphous solid
Confined water has been less extensively studied thag.., . 4 5 first-order phase transition accompanying a large
bulk water but it IS by no means Igss |_nter§st|ng or less reI?slmount of latent heat and structural change. This is an un-
evant to us. (?onfmed vygter exists n biological SYSWW" ambiguous demonstration of polyamorphism involving lig-
membranes, inner cavities of proteins, gtgeological ma-

: . . . uid water by computer simulation. The freezing and melting
terials (clays, rocks, etg¢, and synthesized or industrial ma- . .

. . r ) . . are also observed by changing the distance between surfaces
terials (graphitic microfibers with slit pore, inner space of

. . at fixed temperature and fixed lateral or bulk pressure, a re-
carbon nanotubes, efc.Some biological systems become sult of which is a discontinuous force curve with hysterésis
unstable or does not function if confined water is removed y ’

Some important properties of nanostructured materials ar‘g\orzrebcently Isporlnangous fo_rml\jtllgon O.f arl‘n?_nolayefr 'tcﬁ was
highly sensitive to the presence of confined water. ound by molecular dynamic¢MD) simulations of the

Phase behavior of a fluid is much richer in inhomoge-TIPSP model watet”

neous systems including confined systems than in the bulk Quasi-one-dimensional water, too, exhibits phase transi-
system: such nonbulk systems may exhibit confinementtions qualitatively different from those of the bulk water. The

induced freezing and melting, wetting and drying transitions,ﬁrSt evidence for such transitions was again obtained from

and prewetting and predrying transitions. Pioneering andMD simulations combined with free—engrgy calculations: the
more recent theoretical studies of simple fluids are illuminatSimulations demonstrated that water inside a carbon nano-
ing in understanding those phenoméraWater is a com- tube freezes into four different forms of the ice nanotube, a
plex fluid in the sense that its intermolecular interactionclass of quasi-one-dimensional crystalline ite¥: The pre-
causes hydrogen bonding and so is highly directional. Theredicted formation of the ice nanotube was confirmed by ex-
fore its phase behavior in confined geometry can be eveReriments of Maniwat al.*®
more complex than that expected from the intermolecular ~ The structure, dynamics, and thermodynamic properties
interactions. of confined water depend on many factors such as confining
Computer simulation has proved to be a powerful theo-geometry and physical and chemical properties of surfaces,
retical tool for studying such complex behavior of confinedand the effect of each factor is as yet little understood. Thus
water. There are many computational studies on confined is sensible to choose and study, among many possibilities,
water’*?some of the pioneering works date back to 1980s. model systems with simpler geometri@sg., slit and cylin-
One of the earlier computer simulations focusing on liquid-drical pore$ and simpler surfacege.g., structureless sur-
solid phase transitiod$ showed that water between hydro- faces. Even such simpler systems give rise to at least one
phobic surfaces freezes into a bilayer form of crystalline iceadditional thermodynamic parameter for specifying a ther-
when temperature is lowered under a fixed normal pressurgnodynamic state. Full understanding of the phase behavior
Structure of the bilayer ice is different from any of the 12 of confined water with a given geometry requires exploration
bulk ices but each molecule is hydrogen bonded to its foupf a three-dimensional thermodynamic sp&eg., theTPx
neighbors as it is in the bulk ices. A few years later it wasspace, where is a geometrical parameter such as diameter
shown that water confined in a rlgld hydrophobic slit poreopf the pore or Separation distance of two Surfa_cbmre we
freezes into the bilayer amorphous solid when temperature igcus on the quasi-two-dimensional system and examine the
phase behavior of water in ranges of the thermodynamic con-
dElectronic mail: koga@cc.okayama-u.ac.jp ditions much wider than we have done before.
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FIG. 1. Schematic diagram of the system.
6A
Il. SYSTEM AND CONDITIONS
PXX

As shown in Fig. 1, the model system compridémol-
ecules in a regular rectangular prism with the dimension&IG. 2. Isostres&-T planes in which phase behavior of confined water is
LyXLyxH in thex, y, andz directions. Periodic boundary examined.
conditions are imposed on theandy directions and two
parallel planner walls placed at the top and bottom faces offess to the compone,, of pressure tensor normal to the
the prism confine all the molecules between them. The powalls, for the effective widtt is kept fixed. The isothermal-
tential energyU of the system is defined as a sum of theisostress MD simulation is more efficient than other MD
potential energy among water molecules and that of theimulations in examining phase behavior and phase transi-

water-wall interaction, both being pair-wise additive: tions of a liquid confined in a rigid slit pore. Implementation
N-l N P of the NP,(=P,,)T ensemble simulation is a straightforward
extension of the standard isothermal-isobaric MD
U= ri)+ &)y 1 X ) ) X .
21 j=i2+1 Pt Eg{v(z'k) @) simulation®® here the lateral dimensioris, and L, vary in

response to the corresponding lateral pressures being kept
where ¢ is the TIPAP water potentfdl multiplied by the  fixed at a given value while the widthis kept fixed.
SWitChing function tha.t SmOOthly truncates the pOtential at A thermodynamic state of the one_component System iS
r.=8.75 A?!its argument;; represents the relative configu- specified by three variables, which are taken torb, and
ration of molecules andj including their orientations. The p_ Our main goal is to reveal the phase behavior of con-
pair potentialv between moleculé and wallk is a function  fined water in a part of the three-dimensional thermodynamic
only of the distance from the wall(the top or base face of gpace, in which both the bilayer and monolayer solid phases
the prism to the position of the oxygen atom of the mol- gre involved. To this end we choose two isostress planes,
ecule: P,x=200 MPa and,,=0.1 MPa, and apply the MD simula-
N\ = 9 _ : tion at thermodynamic states corresponding to grid points of
0(@) = Co/2i C3/;3k' @ a square net within a rectangular region of RGOT
This Lennard-Joned.J) 9-3 potential® results from the LJ <270 K and 1.3 A<h<#6.0 A for each isostress plane. Fig-
12-6 potential integrated over infinite volume of each wallure 2 shows the two rectangular regions. Neighboring grid
with a uniform density. The parameteg andC; are those  points are 0.1 A or 0.2 A apart fdrand 5 or 10 K apart for
chosen for the interaction between a water molecule and @. In addition, thermodynamic statesrat 7,8, ...,20 A and
“hydrophobic” solid surfac&.The potential function/(z) is  at P,,=0.1 MPa andr=200 K are examined.
zero at the distance,=(Co/C3)Y6=2.47 A and rapidly in- The numbem of molecules is taken to be 240 for the
creases at shorter distances. In Fig. 1 the dotted lines indicagtates withh<10 A and 480 otherwise; then the lateral di-
the surfaces of zero enerfly(z)=0] with a distanceh apart  mensionsL, and L, of the simulation box are larger than
whereas the top and base faces of the prism indicate tf@ A at any examined conditions. The Gear predictor-
surfaces of infinite energy with a distaneeapart. NoteH corrector method is employed for solving the equation of
—-h=2z,. We takeh to be the effective width for water and motion with a time step of 0.5 fs.
V=Ahto be the effective volume of water, whete-L,L, is The following procedure is taken to determine the melt-
the area of the bases. Note that one must define, in one wayg and freezing curves on each of the two isostress planes.
or the other, the effective width or volume as they are notirst we perform preliminary MD simulations to find out
uniquely defined for microscopic wall-wall separation. With some values oh at which the liquid water spontaneously
the present definition of the effective width water may freezes into the monolayer ice or into the bilayer amorphous
have a monolayer structure lif~0, a bilayer structure i ice whenT decreases from 270 K to 200 K. Then we choose
~0o, and so on, wherer is the molecular “diameter” of one of such states as a starting pdiefg.,h=1.5 A andT
water. =200 K for the monolayer ice phaseSecond we perform
MD simulations in the isothermal and isostress ensembl® D simulations of 10 ns each at the neighboring grid points
or NP,(=Py,)T ensemble are performed, whepg, andP,,  using a final configuration of molecules at the starting point
are the components of pressure tensor normal toy#rend  and then check the structure, the potential energy, and other
xz planes, respectively, to which we shall refer as the lateraproperties. In most cases it is easy to judge whether the sys-
pressure, and is the temperature. This ensemble is not isostem undergoes a phase change or remains in the same state at
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a given condition; otherwise we extend the simulation up to  (9AP,Joh)p + P (dA/dh)p <0, (dA/IPw)n<0 (7)
100 ns at the same condition. The second step is repeated by “ “

encompassing the grid points until the solid phase melts owith fixed T and N, in addition to (4S/dT),p n=0 and
transforms into the other solid phase. This set of MD simu{du/dN)7p n=0. These conditions determine the signs of
lations determines the melting cur(ar the stability limij of ~ the second derivatives @b:

the solid_ phase. Onc_e the melting curves are ob'gain_ed it is PDIIT2 <0, é’ZCD/é’P)Z(Xs 0, FPDINZ=0:

easy to find the freezing curves. The system in a liquid state
at the melting point at giveh is cooled by 5 K and is ex- however they do not determine the sign &i®/sh? or
amined if it freezes at that temperature within 20 ns. If there(aAAP/&h)pxx. Indeed, from the first inequality in Eq7),
is any sign of freezing the MD simulation is extended until
the system freezes completely; if there is no sign of freezing, (9AAP/h) P =~ ZPXX(aA/ah)Pxx’

the temperature is further decreased in steps until spontange right-hand side of which can be either positive or nega-
ous freezing is observed. This set of MD simulations argjye.

done at each value ¢fin the grid points. At some values of Sinced is a homogeneous first-order functionNfwith
h the liquid water never freezes at and above 200 K. Theflixed T, h, andP,,, integrating Eq(5) gives
the value ofh is increased or decreased in steps at that tem-

perature until the system freezes spontaneously. From these &= pN. (8
MD simulations the freezing curves are determined at eaclrhis combined with Eq.(5) results in the Gibbs—Duhem
isostress plane. equation for the confined system:

It is worthwhile here to make some remarks on the em- B
ployment of the TIP4P model for water-water interaction and du=-sdT-aAPdh+vdPy, 9

the LJ 9-3 model for the water-wall interactions. The bilayeryhere s=S/N, a=A/N, and v=Ah/N=V/N. Then we find
ice and the bilayer amorphous have been obtained from theom Eq. (9) the following Maxwell relations: for a fixed
simulations of the ST2 and TIP5P modélsAs mentioned  |ateral pressur®,,,

earlier the monolayer ice has been obtained from the TIP5P

water'® The LJ 9-3 potential for the water-wall interaction <§> _ (ﬁ) (10)

ignores any atomic structure of the walls, but it was con- dh/p 1 It Je

firmed from our earlier simulations that a potential function i i

representing structure of hydrophobic surfaces gives rise tB)r a fixed widthh,

the same structure of the bilayer id@&ote in the case the s v

normal pressure is fixedTherefore, the results presented (R)hT:_<a_1—)hP ' (11)

below would not be qualitatively altered by use of other ' T

reasonable potential models for water and hydrophobic surand for a fixed temperaturg,

faces. ((30) ~ (&aAP) (12)
h/1p Py /Th

IIl. THERMODYNAMICS FOR THE CONFINED SYSTEM Equilibrium conditions for any two distinct phasesand 8

under theNP,T ensemble areT*=TA, u*=uP, and P,

Thermodynamic identities for the one-component sys— P2, Note that in generaP2,# P2 at equilibrium.

tem having the quasi-two—dim_ensional geometry under the A two-phase boundary of the present system is a surface
NPT ensemble are summarized here. For the thermodyi, the three-dimensional thermodynamic space, and the

namics of confined fluids in an open environment the readeg|opes of the surface at fixéd T, andP,, are given, respec-
should refer to the paper by Evans and Marini Bettologyely, py

Marconi? « B
The infinitesimal change in the internal eneldgyof the (a_T) _v v (13)
confined systenfiFig. 1] is written as Py -’
dU=TdS- AP,dh- P,,hdA+ udN, (3) Py _ (aAP)— (AP y
and whenN, P,,, h, andT are fixed the natural choice of the oh )+ 0¥ — P ’ (14)
thermodynamic potential is
hP,—TS. (4) and
P=U+A -
o () o= 15
Then its differential is given by aT Pxx_ (aAP)? — (aAP)?’
dd = -SdT- AAPdh+ AhdR,, + udN, 5 . .
R ® which are the Clapeyron equations for the two-phase bound-
whereAP=P,,—-P,,. From the general condition aries in the quasi-two-dimensional system. The triple point at
hich three phases, B, andy are in equilibrium is a triple
- 8(AP,) 6h - 8(hP,) 5A + > w
ST3S~ 8(AP,) oh = 6(hPy) SA + oNou = 0 ©  ine” in the three-dimensional3D) thermodynamic space.
for the stability of this system, we find Sincedu=du? andduf=du” along the triple line and each
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du is given by Eq.(9), the direction of the triple line is
uniquely determined. Lek;x andA,x denote the differences
x*—x8 and xf-x, respectively, for any quantity of each
phase. Then the direction of the triple line is expressed as

dT _ A]_UAQ(aAP) - AzUAl(aAP)
dP,,  A;SA,(aAP) — A,sA,(aAP)

9ooll)

N W A N N
)
1

(16)

and

dh _ AlvAzs_Azl}AlS (17) o / , . , , . ,
dP  A;SA,(aAP) — A,sA(aAP)’ 0 2 4 6 8 10 12 14

This is a set of Clapeyron equations for the triple line.

The Clapeyron equations can be used to check the re-
sults of MD simulations and, when combined with them,
provide an effective route to determination of the two-phase
boundaries and the triple line in the 3D thermodynamic
space.

9oofl)

IV. FORMATION AND STRUCTURE

OF MONOLAYER ICE i |
1 -
Apart from a single MD simulation at each of the grid 0 J . . \

points to determine phase boundaries, ten independent MD 0 2 4 6 8 10 12 14
simulations at a representative thermodynamic pdimt r(A)
=2.3 A, T=250 K, andP,,=200 MPa are performed to ex- e .

. f fi d struct f th | . Initi IFIG. 3. The lateral radial distribution functions for oxygen atoms of the
am'ne Orma lon and structure ot the mono ay.er !Ce' nitialipherent structure(a) liquid and (b) monolayer ice, both of which are ob-
configurations of water molecules are those of liquid water atained from the instantaneous structure§a250 K, P,,=50 MPa, anch
270 K with the samén and P, and a trajectory of 30 ns is =23 A.
generated in each simulation and if freezing is observed it is

extended by 20 ns. It is found that the probability of freezingghorter than the typical distance of a hydrogen-bonding pair

into the monolayer ice within 30 ns is 80%. The phasepf oxygen atoms. This indicates that one type of the hydro-

change accompanies significant decrease in the potential e§an ponds is nearly parallel to the walls and the other forms

ergy. The average potential energy of the “metastable” quuicgn angle with the walls.

state is —36.9 kJ/mol whereas that of the low-energy phase e define here the hydrogen bond in the inherent struc-

is —41.6 kJ/mol(The latter value is the average over the lasty,re sych that a pair of molecules is hydrogen bonded with

20 ns of a single trajectory of 50 nd’he decrease in poten- agch other if the pair potential energy is less than

tial energy, 4.7 kJ/mol, is as large as 80% of the latent heat15 kj/mol. Then it is found that each molecule in the

of ice Ih. monolayer ice phase is bonded with its four nearest neigh-
The “lateral” radial distribution functiong,o(r)s for  pors with some exceptions, as in ice Ih. What seems to be

oxygen atoms 20f the i2nh(_erent structures are plotted in Fig. 3ynique for the monolayer ice is that the distribution of the
wherer =/(Ax)*+(Ay)® with Ax andAy being the difference  nydrogen-bond energy has four distinct peaks as shown in

in thex andy coordinates of two oxygen atoms. The inherentgijg. 4. They are located at -24.6, -22.6, —-18.0, and
structure is a potential-energy local minimum structure ob-—14.6 kJ/mol.

tained by applying the steepest descent method to an instan-
taneous structure generated from an MD simulation. It is

often more convenient to use the inherent structure for struc- 0® ' ' '

tural analyses than the instantaneous structure because fluc-

tuations due to thermal motions are absent in the former. It is 2 06 1
clear that the liquid phase does not have a long-range order 2

even in the inherent structure whereas the monolayer ice S oal J
phase does have sharp peaks and valleys in the entire range 2

of r. In the monolayer ice phase the first and second peaks of %

Ooo(r) correspond to hydrogen-bonding pairs of oxygen at- 8 o02f T
oms whereas in the liquid phase only the first peak corre-

sponds to hydrogen-bonding pairs. The first and second 0 J L

peaks for the monolayer ice are located at 2.3 and 2.8 A, -30 25 -20 15 -10

respectively, and some of other peaks are found at distances Energy / (kd/mol)

O_f multiples of 2-3_A and those of 2.8 A. The ransVerserig, 4. pistribution of the hydrogen-bond energy in the monolayer ice
distance of 2.8 A is close to and that of 2.3 A is much (obtained from the same inherent structures as in Fig. 3.
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FIG. 5. Inherent structures ¢& the high-energy phaséh) the low-energy
phase, andc) the low-energy phase viewed from an acute angle to the

walls.
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bonds tilting with respect to the walls. The distribution of the
hydrogen-bond length has two peaks centered at 2.74 A and
2.83 A and the former corresponds to the horizontal bonds
and the latter to the tilting bonds.

Any ice form in which the molecular structure of water
remains intact satisfies the ice rule to have a perfect
hydrogen-bond network; the monolayer ice is not an excep-
tion. If there are no other restrictions on the proton arrange-
ment, the residual entropy of the monolayer ice would be
exactly the same as that of the two-dimensional ice model:
kIn(4/3)%2, which is the exact value obtained by Li&b.
However, there is obviously some restrictions other than the
ice rule. First, two protons of each molecule cannot partici-
pate in the two hydrogen bonds along the straight row at the
same time because the hydrogen-bond angle 180° is far
greater than the HOH angle. Second, they also cannot par-
ticipate in the two bonds along the zigzag row at the same
time because a perfect hydrogen-bond network containing
such molecules must also contain molecules violating the
first rule. Consequently each molecule has four possible ori-
entations in each of which one of its proton participates in
one of the two hydrogen bonds along the straight row and the
other participates in one of the two bonds along the zigzag
row. Then there are only two possible arrangements for a set
of all protons on each row. The number of such rows are
2\N provided the number of straight rows and that of the
zigzag rows are the same. Therefore the residual entropy is

S=kin 22N, (18)

which is subextensive and therefd®eN goes to zero in the
thermodynamic limit. It should be noted that Pauling’s ap-
proach to the residual entropy of ice is an approximatam
excellent approximation for ice Jhbut it may lead to a
wrong result for some ices. For example, the two-
dimensional ice model, which has no restrictions on its pro-
ton arrangement other than the ice rule, would have exactly
the same residual entropy as that of ice Ih if it is evaluated by
Pauling’s method; but we know the formerkin(4/3)%2 and

the latter is nearly equal toIn(3/2). For the monolayer ice,
which has additional restrictions on the proton arrangement,

Figure 5 shows an inherent structure of the high-energyauling’s method gives rise to a “negative” residual entropy:

phase and that of the low-energy phase. It is clear from thé&In W with W< 1, which is irrationaf® But because of the
pictures taken from a direction normal to the wdllsgs.  additional restrictions one can couMexactly with no effort
5(a) and 3b)] that the high-energy phase is a liquid with a as given in Eq(18).

disordered hydrogen-bond network whereas the low-energy The monolayer ice obtained from any reasonable inter-
phase is a monolayer crystalline solid with a nearly perfectnolecular potential model of water, or the real one yet to be
network. The in-plane structure of the monolayer ice looksdiscovered, would satisfy the ice rule and the additional re-
like a rectangular net: each node of the net has an oxygestrictions. But whether any further restriction applies or not
atom and each bond has a hydrogen atom, and the ice ruletisay be model dependent and should wait for experimental
satisfied over the entire net except some points of defect@bservation. In the case of the TIP4P mogth the switch-
This is essentially realization of the two-dimensional iceing function the monolayer ice resulting from spontaneous
model?® which has been studied as one of exactly solvabldreezing tends to have a structure in which the two possible
models in statistical mechanics, not as a realistic model o&rrangements, say A and B, for a set of protons in each row
two-dimensional ice. The structure of monolayer ice is, how-appear regularly as AABB-, as shown in Figs. () and
ever, not exactly two-dimensional: a vigWwig. 5(c)] from an  5(c). The simulation of the TIP5P water predicted the AAAA
acute angle to the walls shows a puckered structure of thstructure®®

monolayer. The straight rows forming ridges and valleys of  Figure Jc) shows the strength of each hydrogen bond
the puckered structure have the horizontal hydrogen bondslividing into four energy levels: strongegh<<—30.0, stron-
The zigzag rows crossing over the folds have the hydrogeger (-30.0< ¢<-23.6, weaker (-23.6< $<-16.0, and
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FIG. 6. Diagrams of spontaneous freezif@y and melting(b) observed in  FIG. 7. Diagrams of spontaneous freezif@y and melting(b) observed in
the h-T plane atP,,=200 MPa. the h-T plane atP,,=0.1 MPa.

weakes{(~16.0< ¢), all in units of kd/mol. Half the tilting where the confined water remains to be a liquid even at

bonds along the zigzag rows are the strongest hydroge@oo K. (Strictly speaking, freezing is not observed in the MD
bonds(blue bonds in the figujeand the other half are the simulalt(ion of)iog n3 g g

weaker bondgyellow); half the horizontal bonds along the In Fig. &(b) displayed are a series of melting points for

straight rows are the stronger bonfieen and the other the monolayer ice and that for the bilayer amorphous phase

?haelf f?)ﬁar \évr?::(estlet\)/c;rrgs;i% chrlc? leagof;&q;ai ];E]l::rie ttl}at in the same isostress plane as in Fi@g)6The domain under
9y ycrog g the melting “curve” is again larger for the bilayer phase than

correspond to four relative orientations of bonding pairs. The\é

strongest bonds connect two neighboring straight rows on 08r0tr|]<e mobncilayer l;;:ez ph:s;gtgef hltg:]hes_tl melting po;]nt IS
of which is in state A and the other is in statgtBe same A ath between 5.2 and . or the bilayer amorphous

and B defined above so the dipole-dipole interaction of and 270 K ah between 2.3 and 2.4 A for the monolayer ice.

each pair is energetically favorable. On the other hand, thi SOme cases the bilayer amorphous phase does not melt but
weaker bonds connect two neighboring straight rows both irﬁransforms itself mtq the bilayer crystal in the course of rais-
state A or B, so the dipole-dipole interaction is unfavorable N9 temperature at fixet (e.g., 270 K at 3.2 or 3.8 Altis
Similarly, the weakest bonds connect two neighboring zigzag's© found that the two melting curves cross at around
rows both in state A or B and thus each bonding pair has th& T)=2.6 A, 230 K and thus there is an overlap of the
same orientatiotiso the higher interaction enefgyhile the monolayer ice and bilayer amorphous domains. Indeed, the
stronger bonds connect two zigzag rows in states A and BYstem undergoes the structural change from the bilayer

and so the dipole-dipole interaction is more favorable. Thiggmorphous to the monolayer ice at 2.4 A, 200 K and at
completes structural analyses of the monolayer ice. 2.5A, 220K and the reverse structural change at 2.8 A,
200 K.
Figure 7 shows freezing points and melting points in the
V. FREEZING, MELTING, AND STRUCTURAL CHANGE isostress plane of 0.1 MPa. The freezing and melting curves

A large number of MD simulations performed at grid &€ similar to those at 200 MPa. However, several systematic

points on an isostress plane, each starting from a liquid statdeviations are caused by the change of the lateral pressure
reveal a series of points at which liquid water freezes sponPxe First, both the freezing and melting points of the mono-
taneously. That is, a freezing curve in theT plane is ap- layer ice decreases with decreasing pressure Vbhisnless
proximately identified by this procedure. Likewise, MD than 2.4 A. The highest freezing point is 240 K and the high-
simulations at grid points starting from a solid state identify€St melting point is 260 Kboth at 2.3 A, which are both
a melting curve of that solid in thie-T plane. lower than those at 200 MPa. Second, although the highest
Figure Ga) shows freezing points in the isostress planefreezing point and the highest melting point of the bilayer
of 200 MPa. It is clearly shown that there are two separat@morphous phase are nearly independent of the pressure,
domains in which spontaneous freezing takes place; the réoth freezing and melting points &t>3.8 A increase with
sulting phase is the monolayer ice in the domain located afecreasingP,,; the largest possiblé for the spontaneous
smallerh side and the bilayer amorphous solid in the otherfreezing at 200 K increases from 4.8 to 5.4 A with decreas-
domain at largeh side. The domain of the bilayer phase is ing Py from 200 to 0.1 MPa. We again observe that in some
significantly larger than that of the monolayer ice. The high-cases the bilayer amorphous phase does not melt but trans-
est freezing point is 270 K at between 3.4 and 3.6 A for forms itself into the bilayer ice phase in the heating process.
the bilayer solid whereas it is 250 K atbetween 2.1 and As observed at 200 MPa, the melting curves of the mono-
2.3 A for the monolayer ice. At 200 K, the rangelobf the  layer ice and the bilayer amorphous phases cross and the
bilayer domain is twice as wid§2.8 A,4.8 A]) as that of structural transformation between two solid phases takes
the monolayer domair[1.4 A,2.4 A]). There is a gap be- place.
tween the two domains, ranging from 2.5 to 2.8 A at 200 K,  Summing up the effects of pressure shown in Figs. 6 and
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TABLE |. Phase equilibria among (liquid watep, 8 (bilayer ice, and y (monolayer icg Thermodynamic
guantities are evaluated at representative points A, B, C, D, B,@200 MPa and F, G, H, I, J &,
=0.1 MPa. Difference\x at thex-\ equilibrium is defined ag<-s", wherex=u,s,... andx,\=a,3,7. hisin
units of A, T in units of K, u in units of kJ mot?, sin units of J mof' K%, v in units of A3, andaAP in units
of A2MPa.

Point  (h, T) Equilibrium  Au As Av A(aAP) IT/ Py Pyl o dTldh

A (1.4, 210 a-y 3.45 17.2 133 -3.2810° 0.0466 -24%K10° 115

B (2.3, 260 a-y 529 212 1.76 531 0.0502 3.8210> -15.1
C (2.5, 230 a-y 116 430 -1.39 5.4810° -0.195 -3.9410° -767

D (2.8, 240 a-B 3.46 14.7 0.496 -3.2410° 0.0204 -6.5410° 133

E (3.6, 270 a-B 3.93 142 -0.753 413 -0.0319 -5490 -17.5
F (4.6, 220 a-f 224 884 -247 1.2810° -0.169 -4.8&10*> -815
G (1.4, 200 a-y 3.60 18.0 1.38 -2.741C° 0.0462 -1.9%10° 91.6
H (2.3, 245 a-y 543 222 2.36 99.2 0.0640 4.2UC -2.69
| (2.5, 240 a-y 4.05 16.9 1.01 1.84 10° 0.0360 1.8%10° -65.9
J (2.8, 220 a-B 200 911 0976 -3.9410° 0.0645 -4.0&410° 261

K (3.6, 270 a-f3 412 152 -0.157 194 -0.0062 -1.240° -7.66
L (4.6, 245 a-B 3.84 157 -1.46 906 -0.0559 -6.220° -34.8

7, the domain of the monolayer ice in theTl plane shrinks. tative a-8 and a-y equilibrium states. Each point is either a
In contrast, the domain of the bilayer amorphous solid exmelting point, a freezing point, or a midpoint between melt-
pands with decreasing pressure. ing and freezing points.
Then the differences im, s, v, andaAP between two
phases are evaluated at these points. The entropy difference
V1. PHASE EQUILIBRIA OF CONFINED WATER As is given asAap/_T:Au+ Py Av with the assumption that
Aun=0 at these points. The results are shown in Table I. By

Let now «, B, and y stand for the liquid phase, the Egs.(13—(15), the slopes of the phase boundaries are related
bilayer amorphous phase, and the monolayer ice phase, raith the ratio of differences irs, v, andaAP between two
spectively. The direct observation of melting and freezingcoexisting phases. Evaluated values of the sIOgEsIP,)p,
transitions of the confined water allows us to narrow down(dPx/dh)r, and(sh/dT)p at the 12 points are also listed in
the a-B and a-y two-phase equilibriunT at givenh andP,,  Table I. Phase boundaries in theT planes are determined
or equilibriumh at givenT andP,,. Uncertainty in the equi- by interpolating the 12 points with the information of
librium T (or h) is the difference inT (or h) between the (z?h/z?T)pXx at these points.
point of spontaneous freezing and that of spontaneous melt-
ing. Itis found that the smf_:lllest uncertaintyTins pnly 5K, VII. PHASE DIAGRAMS IN THE A-T PLANE
the same as the smallest incremé@mtdecrementin T cho-
sen in the MD simulations, and the smallest uncertaintly in Figure 8 shows the phase diagrams at 200 MPa and
is 0.1 A. The uncertainty is relatively large when two phase€.1 MPa. The phase diagrams and Table | give significant
are expected to coexist at low for the lower the tempera- amount of information. The first and obvious is that the do-
ture the lower the nucleation rate of a new phase. main of the bilayer amorphous solid phg3at a given pres-

In some cases, we can still reduce the uncertainty fronsure is larger than that of the monolayer solid phase that
thermodynamic requirement. For example, let us look at thg@ressure, as we have seen in Figs. 6 and 7. The domain of the
point: h=2.55 A, T=200 K, andP,,=200 MPa, where nei- y phase becomes smaller while that of fh@hase becomes
ther spontaneous freezing of the liquid nor spontaneous meltarger with decreasing,, from 200 MPa to 0.1 MPa, and so
ing of the monolayer ice is observed. From E@b.and(8)  the size difference between the two domains is pronounced
ui=uB=y—yBf-T(s*-sf) with #=(U+AhP/N, the atthe ambient pressure.
guantity corresponding to the enthalpy per molecule for the  The second is that the width of each loop, i.e., the range
bulk system. Bothy® and ¢# are directly obtained from MD of h in which each solid is the stable phase, monotonically
simulations, and we fing#*-y#<0 at this particular point. shrinks with increasingr and eventually disappears at the
But at the same time we know*-s’>0. Thereforeu®  highest melting temperature of that solid phase. More pre-
<uP, i.e., the liquid must be the stable state at this pointcisely, the slope of each loop is always positive on the
Since the liquid freezes d@t=220 K andh=2.5 A, we may smallerh side and always negative on the largeside.
conclude that the true equilibriuimat 200 K and 200 MPa Since the slope is given by E¢L5) and the entropy differ-
is between 2.50 and 2.55 A, the uncertanity being onlyences'-s*° between liquid and solid phases in equilibrium
0.05 A. is always positive, the slope is positivenegative if

In order to determine the two-phase boundaries in eactaAP)"d-(aAP)s° is negative (positive. Table | shows
isostress plane and ultimately the two-phase surfaces in tH@AP)"d-(aAP)s° is positive on the large-sides(points C,
3D thermodynamic space, 12 points are chosen as represef-|, and L) and negative on the smallarsides(points A, D,
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FIG. 8. Phase diagram of confined watéa P,,=200 MPa andb) P,,
=0.1 MPa. The symbolg, B, and y indicate the liquid, bilayer solid, and 0
monolayer solid phases, respectively.
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G, and J. The same results would be expected for any quasi- h/A

two-dimensional system that exhibits liquid-solid phase tran-

sitions under low or moderate lateral pressure. To see this, IEIG- 9. Normal pressur®,, on the walls as a function df: () 260 K and

f, be a normal force per molecule acting on the walPjfis (P 240 K. The lateral pressue,, s fixed at 0.1 MPa.

small compared td,, in the liquid or solid phase, which is ) )

always the case in our Simu|atior(wp)”q_(aAP)SfJ':fgq of their steep slopes, the-B8 and a-y phase boundaries on
_f§0|_ The phase change caused by decreasifep increas- the inner sides do not meet in the temperature range above
ing f,) should be in the direction that reduces the stress, i.e200 K, i.e., the temperature of the-8-y triple point (at
decreased,. Thus, f'9-f5°>0 on the largeh side of the 0.1 MPa and 200 MBas lower than 20K. The reason that
liquid-solid boundar§/ thereaﬂq—fioko on the smaller  the system undergoes tjgey structural change above 200 K
side. It is, therefore, generally expected for the system undé#t 0-1 and 200 MPa is that at such temperatures the meta-
low or moderate lateral pressure that the slaésh of a  Stable region of the bilaygimonolayey solid phase extends
solid-liquid phase boundary is always positive on the smaII-beyond the region of the liquid phase to the region of the

h side and is always negative on the other side. It is nov\;nonqlayer(bila?]/erj So';]d phase.l _ .
clear that each loop is smooth everywhere including the ”F|gure fg S ,OWSrt] € ?or:jn_?l prﬁssfgéact?foon tde
point where the smaliand largeh phase boundaries meet at walls as a function oh at fixedT (either or Kan

the highest melting temperaturelhe shape of the8 loop f|x_ed PXX.(O'l MP‘.”): At 260 K, the force curve exh!b|t.s a
has been inferred from our earlier MD simulaticisee Fig. pair of discontinuities, between which the system is in the

6b in Ref. 15.] At the highest melting point, wheré&T/dh bilayer ice phasg and otherwise in the liquid phase The

- lig — sol . : liq — ¢sol ; normal pressureP,, increases monotonically and rapidly
P0,>>(aPAP) (aAP)*'[Bq. (19] and in particular;'=f, ™ if with decreasingh when the system is in the solid phase
Yv4 XX+

The third is that the slope is much steeper on the inne\rNhereas the curve d?;, shows a local maximum and mini-

. . mum reflecting layering structure of the liquid. Note that the
side of each loop where th@andy domains face each other . : !
than on the outer side of each lodihe left side of they magnitude ofP, is much greater than that of fixed,, as

domain and the right side of the domain), which is again mentioned above. Along the isothermal pass of 240 K, the

I . . .force curve exhibits another pair of discontinuities between
clearly shown in Fig. 8. The reason is less obvious and dif- . . .

. . : which the system is in the monolayer ice phase, and now the
fers in the two cases. Steepness of the slope is determined tr)é(n e where the svstem is in the bilaver ice phase is wider
the magnitudes ofAs and A(aAP). As to the B loop, 9 y y P

. . ; han at 260 K. Th results ar nsistent with the ph
|A(aAP)| is much larger on the inner side than on the outert an at 260 ese results are consistent with the phase

side while As differs very little on both sidefcompare diagram shown in Fig. ®).
points D and F or J and L in Table, which is the reason of
the steeper slope on the inner side. As to fhleop, on the
other hand, the reason is thss is much smaller on the inner Table | and Fig. 8 suggest that pressure dependence of
side than on the outer side whil&(aAP)| is more or less the the solid-liquid phase equilibria is simple and small. Thus a

same on both sidggompare A and B in the tableBecause global phase diagram, i.e., a three-dimensional diagram in

VIIl. GLOBAL PHASE DIAGRAM
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the P,,-h-T space, is obtained with reasonable accuracy byibrium T monotonically increases with increasimiy, be-
simply interpolating phase diagrams at the two isostressause water shrinks as it freezes on that side.

planes(P,,=0.1 and 200 MPgr using derivatives of the equi- The a-B equilibrium h at 200 K decreases monotoni-
librium T or h with respect toP,,. The resulting surfaces of cally with increasingP,, on both the branches of the phase
the phase boundaries are displayed in Fig. 10. boundary. This is becaustv and A(aAP) have opposite

It is found that thea-B equilibrium T at h=4.6 A de-  signs in any case. The dependencePgyis noticeable on the
creases with increasirig, (like the melting curve of ice Ih  larget branch but it is practically undetectable on the small-
whereas the equilibriunT at h=2.8 A increases with in- h branch. Thea-y equilibrium h at 200 K is very weakly
creasingP,, (like the melting curve of most soliglsThis is  dependent orP,, on both branches of the boundary.
because the confined water expands as it freezes into the
bilayer solid on the largé- side of the 8 domain but it |X. CONCLUDING REMARKS

hrink h ide. Thea- ilibrium T at h
shrinks at the smalt- side ea-y equilibrium T at A phase diagram of water confined in a hydrophobic slit

=2.5 A initially increases with increasinB,, before reach- is obtained based tensive MD simulati
ing its maximum and then decreases, which reflects the pre%f)re IS obtained based on extensive simulations com-

sure dependence of the volume change on the laigjde of ined with the Clapeyron equations for the guasi-two-
the y domain. On the smalirside (h=1.4 A), the a-y equi- dimensional system. There are two solid phases, the mono-

layer ice and the bilayer amorphotsr crystalling ice, as
well as a liquid phase in a small range of the effective width
178 (0 A<h<6 A) above 200 K. The liquid-solid phase bound-
aries of the two solids are convex curves with respett ito

the isostres$-T planes(Fig. 8) and convex surface@gain
with respect toh) in the three-dimensionaP,,-h-T space
(Fig. 10. It is explained based on a general argument why
the solid-liquid phase boundary on the latyside of each
loop has always a negative slope and that on the shrsitie
has always a positive slope.

The monolayer ice has a smaller domain than the bilayer
solid in a given isostress plane but the difference in domain
size becomes smaller as the lateral pressure is increased from
0.1 to 200 MPa. The highest melting temperature is around
260 and 270 K for the monolayer and bilayer solid, respec-
tively, and the range oh where each solid phase can be
stable is of the order of subnanometer at lower temperatures.
These conditions for the formation of monolayer and bilayer
solids of water can well be achieved and controlled in the
surface force apparatus, atomic force microscopy, or other
modern experiments.

Structural analyses of the monolayer i@btained from
the TIP4P modeglshow that there are four kinds of hydrogen
bonds regularly arranged in the crysi&ig. 5(c)]. The re-
sidual entropy of the monolayer ice differs from that of the
2D ice model and is exactly given by E@L8), which is
] subextensive. No freezing transition is observed, i.e., liquid

h/A water remains stable, in the range of 6A<20 A at
TIK 200 K and 0.1 MPa within the time scale of simulations
(e.g., 30 ns

300

250

200 L

Po/MPa 100 |

200 } 5

300
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