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The thermodynamics of the hydrophobic effect, as measured primarily through the temperature
dependence of solubility, is reviewed, and then a class of models that incorporate the basic mechanism of
hydrophobicity is described. These models predict a quantitative relation between the free energy of
hydrophobic hydration and the strength of the solvent-mediated attraction between pairs of solute molecules. It
is remarked that the free energy of attraction being just of the order of the thermal energy kT may be important
for the effective operation of the hydrophobic effect in proteins. Deviations from pairwise additivity of
hydrophobic forces are also briefly discussed.

I. Introduction

Hydrocarbons are only slightly soluble in water: they are hydro-
phobic. The accommodation of a hydrocarbon molecule in
water is accompanied by an increase in an associated free
energy. Hydrocarbons are not the only hydrophobes but they
are typical of the class. Characteristically, their solubility dec-
reases with increasing temperature at low temperatures, which
provides an important clue to the mechanism of hydrophobi-
city. At higher temperatures the solubility, after reaching a min-
imum, often then increases with further increase of temperature.
These effects are illustrated in Fig. 1, which shows the Ost-

wald absorption coefficient S of methane in water (the ratio
of the number density of dissolved methane to that in the equi-
librium vapor), as a function of temperature.1 This is at a par-
tial pressure of methane of 1 atm, although there is almost no
dependence on the pressure as long as the concentration of
methane in both phases is low (Henry’s law).
The unfavorable free energy change accompanying the dis-

solution of the hydrocarbon results from structural changes

in the solvent around each solute molecule. This is the phe-
nomenon of hydrophobic hydration. The total volume of
solvent so affected by a pair of solute molecules is less when
the two are close together than when they are far apart, as illu-
strated schematically in Fig. 2. The result is an effective,
solvent-mediated attraction between the two. This is the
hydrophobic attraction.
These effects have long been recognized to be important in

physical chemistry and biochemistry. The subject thus has an
enormous literature, ranging from works that are now clas-
sic2–17 to those more nearly current,18–85 many of these quite
sophisticated. A recent authoritative assessment of the status
of the field with emphases different from those in the present
account is in a review by Pratt.29 A beautiful earlier review
by Scheraga86 with an account of experimental results and
emphasis on the role of hydrophobicity in biochemistry,
should also be noted.
The thermodynamics of transfer of a molecule from one

phase to another is outlined in Section II, and then the thermo-
dynamics of hydrophobic hydration as inferred from solubility
measurements such as those in Fig. 1 is presented in Section
III. What is seen there, among other principles, is that the dis-
solution of a hydrophobe in water is energetically favorable,

y Permanent address: Department of Chemistry, Okayama University,
3-1-1 Tsushimanaka, Okayama 700-8530, Japan.

Fig. 1 Ostwald absorption coefficient S of methane as a function of
temperature T (from compilation of Battino1).

Fig. 2 Two hydrophobic molecules, (a) far apart, and (b) close
together. The regions within the dashed curves represent schematically
the volumes of solvent that are significantly affected by the presence of
the solutes. The total volume so affected by the pair is smaller in (b)
than in (a).
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perhaps contrary to naı̈ve expectation, but is entropically unfa-
vorable to such an extent that the equilibrium solubility is very
low. This was the historic observation that led to our present
understanding of hydrophobicity and its implications.2 Those
two sections are an expanded version of an earlier treatment;87

the principles are mostly well known,11 but it is useful to bring
them together here for reference.
Section IV describes a class of models that incorporate the

main mechanism of hydrophobicity as revealed by the thermo-
dynamic studies. The models make detailed predictions about
hydrophobic attraction including a quantitative connection
between the strength of the attraction and the free energy
of hydrophobic hydration. These models, too, have been
described earlier;87 the present account includes some more
recent results.
In Section V the geometric idea expressed in Fig. 2 is

extended to the simultaneous interaction of three solute
molecules, from which it is possible to make some speculative
inferences about the three-body contribution to the solvent-
mediated interaction energy.
The main results are briefly summarized in the concluding

Section VI

II. Thermodynamics of transfer

We ask here for the changes in various thermodynamic quan-
tities accompanying the transfer of a molecule A from a phase
a to a phase b. Each phase separately is in complete internal
equilibrium both before and after the transfer but the two
phases need not be in equilibrium with each other. Later A will
be a hydrophobic molecule, a some reference phase containing
A, and b water or an aqueous solution, but for now A, a, and b
are general.
The cases of most interest are those in which the tempera-

tures T of the two phases are equal and are the same before
and after the transfer (isothermal transfer). We will specify
that, and then contemplate either of two further circumstances
in which the transfer is made: that in which the volume of each
phase separately is the same before and after the transfer, or
that in which the pressure of each phase separately is the same
before and after.
Let maA and mbA be the chemical potentials of A in the respec-

tive phases. In the transfer with the volumes fixed, the differ-
ence mbA � maA is the net change in the Helmholtz free energy
of the two phases together; call it DFV :

DFV ¼ mbA � maA: ð1Þ

In the transfer with fixed pressures, the same difference
mbA � maA is the change in the composite system’s Gibbs free
energy; call it DGp :

DGp ¼ mbA � maA: ð2Þ

Note that DFV ¼ DGp , but they are the DF and DG of different
processes.
Significant parts of DFV and DGp result merely from the dif-

fering concentrations of A in the two phases, but we wish to
know how much of DFV and DGp reflect only the intrinsic ener-
getic and structural changes that occur in the phases as a result
of the transfer of the A molecule from one to the other. We
thus define

DF�
V ¼ DFV � kT ln

cbA
caA

ð3Þ

DG�
p ¼ DGp � kT ln

cbA
caA

ð4Þ

where k is Boltzmann’s constant and caA and cbA are the number
densities of A in the respective phases; and now DF �

V ¼ DG �
p . If

either phase is dilute in A the subtracted term accounts for the
whole of the dependence of DFV and DGp on the concentration
of A in that phase, and the resulting DF �

V and DG �
p are then

independent of that concentration. This remains true, and
DF �

V and DG �
p remain finite, even when cbA ! 0; i.e., in the limit

in which there is no A in the b phase prior to the transfer; while
the original DFV and DGp diverge to �1 in that limit. When
the phases are not dilute in A there is a residual dependence
of DF �

V and DG �
p on the concentrations, reflecting the fact that

the other A molecules are then a significant part of the envir-
onment from or to which the contemplated transfer of the A
molecule occurs.
Let DSV and DSp be the corresponding changes in the com-

posite system’s entropy in the two different transfer processes,
and define

DS�
V ¼ DSV þ k ln

cbA
caA

ð5Þ

DS�
p ¼ DSp þ k ln

cbA
caA

: ð6Þ

If either phase is dilute in A there is no dependence of DS�
V and

DS�
p on the concentration of A in that phase, but otherwise

there is. Again, these remain finite in the limit cbA ! 0, while
DSV and DSp would be infinite.
Now consider first the fixed-volume transfer. Each number

density cA is NA/V with NA the number of A molecules in
the phase and V its volume. During the transfer, NA increases
or decreases by 1 (in the b or a phase, respectively), while V is
fixed. Then from (1), (3), and (5),

DSV ¼ � @DFV

@T
; DS�

V ¼ � @DF�
V

@T
ð7Þ

where the temperature differentiations are at fixed numbers of
molecules of all the substances in each phase and at fixed
volumes of both phases. The change in the composite system’s
energy, DEV , accompanying the constant-volume transfer, is

DEV ¼ DFV þ TDSV ¼ DF�
V þ TDS�

V ð8Þ

¼ @DFV=T

@1=T
¼ @DF�

V=T

@1=T
: ð9Þ

The constant-volume heat capacity CV of the two phases
together also changes as a result of the transfer, the net change
being

ðDCV ÞV ¼ @DEV

@T
¼ T

@DSV

@T
¼ T

@DS�
V

@T
ð10Þ

¼ �T
@2DFV

@T2
¼ �T

@2DF�
V

@T2
; ð11Þ

where the second subscript V in (DCV)V specifies fixed-volume
transfer.
In the transfer at fixed pressure the quantities of most inter-

est, besides DG�
p and DS�

p, are the change DHp in the composite
system’s enthalpy and the change (DCp)p in its constant-
pressure heat capacity; but now the relations analogous to
(7)–(11) are slightly more complicated because the volumes V
in cA ¼ NA/V are no longer fixed when the temperature
changes at fixed pressure and composition. Let ea and eb be
the coefficients of thermal expansion of the two phases. Then
from (1), (4), and (6), the analog of (7) is

DSp ¼ � @DGp

@T
; DS�

p ¼ �
@DG�

p

@T
þ kTðeb � eaÞ; ð12Þ

where now the temperature differentiations are at fixed num-
bers of molecules of all the substances in each phase and at
fixed pressure of each phase. With the same understanding
of what is now held fixed in the temperature differentiations,
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the analogs of (8)–(11) are

DHp ¼ DGp þ TDSp ¼ DG�
p þ TDS�

p ð13Þ

¼ @DGp=T

@1=T
¼

@DG�
p=T

@1=T
þ kT2ðeb � eaÞ ð14Þ

ðDCpÞp ¼ �T
@2DGp

@T2

¼ �T
@2DG�

p

@T2
þ 2kTðeb � eaÞ þ kT2 @ðeb � eaÞ

@T
: ð15Þ

A special case of the transfer process is that in which the
two phases are in equilibrium with respect to the transfer of
A. This is when maA ¼ mbA, so that DFV ¼ DGp ¼ 0. Then from
(1) and (2),

DF�
V ¼ DG�

p ¼ �kT ln S ðequilibrium transferÞ; ð16Þ

where

S ¼ ðcbA=c
a
AÞeq; ð17Þ

the ratio of the number densities of A in the two phases when
they are in equilibrium with each other. This is the key to
obtaining the thermodynamics of transfer from measurements
of equilibrium solubility.
When b is a liquid or solid solution dilute in A and a is a

dilute gas, S is the Ostwald absorption coefficient, a common
measure of gas solubility, as illustrated for methane in Fig. 1.
Since b is then a hardly compressible condensed phase its prop-
erties as a solvent are insensitive to the pressure to moderate
pressures; and the equilibrium ratio (cbA/c

a
A)eq of the concentra-

tions of A in these dilute phases is independent of their sepa-
rate values (Henry’s law); so S is practically a function of
the temperature alone (as remarked in Section I). This circum-
stance, in which both phases are dilute in A, is also, we saw,
that in which DF �

V , DG
�
p, DS

�
V , and DS�

p, and so also DEV ,
DHp , (DCV)V , and (DCp)p , are independent of the concentra-
tions. Thus, their values are independent of whether or not
the transfer of the A molecule from a to b occurs with the ratio
cbA/c

a
A equal to that for which the two phases are in equili-

brium. In this case, then, the significance of (16) and (17) is
that DF�

V , DG
�
p, and the quantities derivable from them are

the same as when the transfer occurs with the two phases in
equilibrium, even when it does not; and these quantities are
then obtainable from the equilibrium solubility S, which is vir-
tually a function of the temperature alone.
When a and b are both condensed phases, but both again

dilute in A, the same considerations apply. The equilibrium
ratio S in (17) is then the partition coefficient of A between
the phases at equilibrium, and is virtually independent of the
pressure and of the separate values of cbA and caA; it is practi-
cally a function of the temperature alone; and DF �

V and DG�
p,

as given by (16) and (17), and the quantities obtainable from
them, are the same as when the transfer occurs with the two
phases in equilibrium even when it does not.
Another case of practical interest is that in which the a

phase is pure or nearly pure liquid or solid A while b is again
a condensed phase dilute in A. We continue to define DF �

V

and DG�
p by (3) and (4) and DS�

V and DS�
p by (5) and (6),

so the remaining relations (7)–(17), which follow from (3)–
(6), still all hold. Now caA in the denominator of the argument
of the logarithms in (3)–(6) is practically a constant, and,
since we are supposing b to be dilute in A, both DF�

V and
DG�

p are independent of the remaining variable cbA. Thus,
(16) with (17) hold in the case, too.
Summarizing, there are three common situations in which

all the relations (7)–(16) hold, with S, defined by (17), practi-
cally a function of the temperature alone; i.e., practically inde-
pendent of pressure to moderate pressures and independent of
the concentration of A in the dilute phase(s). These situations

are those in which b is a condensed phase dilute in A (or from
which A is absent), while (i) a is a dilute gas containing A; or
(ii) a is a condensed phase dilute in A; or (iii) a is a condensed
phase that is pure or nearly pure A.
In these situations the temperature derivatives of S may be

written as total derivatives, d/dT, and the thermodynamic
quantities of interest are obtainable from S, i.e., from the equi-
librium partition coefficient, by the formulas

DF�
V

kT
¼

DG�
p

kT
¼ � lnS ð18Þ

DS�
V

k
¼ d

dT
T lnSð Þ;

DS�
p

k
¼ d

dT
ðT lnSÞ þ Tðeb � eaÞ ð19Þ

DEV

kT
¼ T

d

dT
lnS;

DHp

kT
¼ T

d

dT
lnSþ Tðeb � eaÞ ð20Þ

ðDCV ÞV
k

¼ T
d2ðT lnSÞ

dT2
ð21Þ

ðDCpÞp
k

¼ T
d2ðT lnSÞ

dT2
þ 2Tðeb � eaÞ þ T2 @ðeb � eaÞ

@T
ð22Þ

as now follow from the more general formulas stated earlier.
Applications of these formulas to the transfer of gaseous

hydrocarbons into water are described in the next section,
where they illustrate the principles of hydrophobic hydration.

III. Hydrophobic hydration

In Table 1 we give the results for the transfer of a molecule of
methane, ethane, propane, or n-butane from the gas phase into
water, at 300 K, as derived from (18)–(22), with S taken from
the compilations of Battino.1,88–90 The b phase is pure or prac-
tically pure water. For eb and its temperature derivative,
required for the correction terms in (19), (20) and (22), we took
the data from the compilation by Rowlinson and Swinton.91

Those data are for water as it coexists with its vapor, so not
at 1 atm, whereas the data for S are at 1 atm, but the distinc-
tion is of no importance since neither the coefficient of thermal
expansion of water nor the Ostwald absorption coefficient S
varies significantly with the pressure over this range. What
makes the pressure variation of eb even smaller is that it is pro-
portional to the temperature variation of the isothermal com-
pressibility,92 and 300 K is not too far from 320 K, where the
compressibility of water has a temperature minimum.91 The a
phase, meanwhile, is a dilute, practically ideal gas, for which
ea ¼ 1/T and dea/dT ¼ � 1/T2. The correction terms in (19),
(20), and (22) are small; the difference between DS�

V/k and
DS�

p/k and between DEV/kT and DHp/kT at 300 K is only
0.9. By coincidence, the two correction terms on the right-hand
side of (22), which are opposite in sign, nearly cancel each
other, with the result that (DCV)V and (DCp)p are nearly equal
at 300 K.
Table 1 has many important lessons. The first and most

obvious is that the free energy of transfer is positive and is
several multiples of the thermal energy kT, which, via (18), just
reflects the low solubility of the hydrocarbons in water. It is
the next entries in the table that tell the hydrophobicity story:
that the low solubility is a consequence of an unfavorable

Table 1 Thermodynamics of transfer of a hydrocarbon molecule

from the gas phase into water at 300 K

DF�
V

kT
¼

DG�
p

kT

DS�
V

k

DS�
p

k

DEV

kT

DHp

kT

ðDCV ÞV
k

ðDCpÞp
k

CH4 3.4 �7.5 �8.4 �4.1 �5.0 29 29

C2H6 3.1 �9.7 �10.6 �6.6 �7.5 36 36

C3H8 3.4 �11.0 �11.9 �7.6 �8.5 41 41

n-C4H10 3.6 �12.5 �13.4 �8.9 �9.8 40 40
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(negative) entropy change that overweighs a favorable (nega-
tive) energy change. The difference between �DS�

V/k and
�DEV/kT (or, equivalently, between �DS�

p/k and �DHp/
kT ), which is DF�

V/kT (¼DG�
p/kT ), is nevertheless smaller

than either one separately; i.e., �DEV/kT, while less than
�DS�

V/k, is nevertheless more than half of it (�DHp/kT is
more than half of �DS�

p/k), so there is considerable cancella-
tion between them. That the entropy of transfer is negative
at 300 K means, from (7), that at this temperature the free
energy of transfer becomes more positive (more unfavorable)
with increasing temperature; and that the energy of transfer
is negative at 300 K means, from (20), that at this temperature
the solubility decreases with increasing temperature. Thus, at
300 K, these hydrocarbons—and hydrophobes generally—
become more hydrophobic with increasing temperature.
The heat capacity changes on transfer, (DCV)V and (DCp)p ,

are positive and huge: many multiples of the Boltzmann
constant k. This was one of the earliest observations of a
‘‘hydrophobic effect ’’.13,93 This and the negative energetic
and entropic changes are ascribable to structural changes in
the solvent, generally thought to be the strengthening of (or
formation of additional) hydrogen bonds among the water
molecules neighboring the solute.2

A further observation from the table is the manifestation of
‘‘enthalpy–entropy compensation ’’,15,94,95 according to which
free-energy changes (free energies of transfer in this instance)
are nearly constant through a homologous series, although
the changes in the separate energetic and entropic components
of the free energy vary substantially through the series.
Often when a solute can itself form hydrogen bonds with

water the result is a closed-loop solubility curve,96 illustrated
here in Fig. 3. The figure shows the temperature dependence
of the mutual solubility of two hypothetical substances A
and B at a fixed pressure (or while simultaneously in equili-
brium with vapor). The tilt of the solubility curve is exagger-
ated in the figure to make clear that in general the
temperature T1 of minimum solubility of A in B is not the
same as the temperature T4 of minimum solubility of B in A
(although in theoretical models with an artificial symmetry it
may be97). One may think of the A-rich side of the loop as
the phase earlier called a and the B-rich side as the aqueous
phase b. Since on the lower part of the loop the solubility of
A in B (as well as that of B in A) is decreasing with increasing
temperature, it is manifesting the hydrophobic effect.23 That

the solubility passes through a minimum with increasing tem-
perature and thereafter increases is a characteristic also of the
solubility of most hydrocarbons in water1,88–90(as seen for
methane in Fig. 1).

For the transfer of a molecule between coexisting phases
at temperature T, the enthalpy and entropy changes DH
and DS (6¼ DS*) are related by DH ¼ TDS ( 6¼ TDS*). Refer-
ring still to Fig. 3, we will for now use the notation DHA

(¼ TDSA) for the enthalpy of transfer of an A molecule
from the phase a relatively rich in A to the phase b poorer
in A, and DHB (¼ TDSB) for the enthalpy of transfer of a
molecule B from b to a. One may then show that DHA and
DSA are negative for temperatures below some temperature
T2 between T1 and T4 , they vanish at T2 , and are positive
above T2 ; while DHB and DSB are negative below some tem-
perature T3 between T1 and T4 , they vanish at T3 , and are
positive above T3 ; with T3<T2 if the coexistence curve is
oriented as in the figure.
For the transfer of an A molecule from the phase a richer in

A to the phase b poorer in A, the modified entropy change
DS�

A, defined analogously to DS�
p in (6), is algebraically smaller

(more negative or less positive) than DSA itself, and so is still
negative when DSA vanishes at the temperature T2 .
Where the b phase is very dilute in A it hardly matters to the

values of the DH and DS* of transfer whether the transfer of
the A molecule from the a phase is to the coexisting b phase
(where they are then DHA and DS�

A) or to pure B (pure water,
say, if b is an aqueous phase). In the latter case the unmodified
DS of transfer would be infinite. Likewise, if the a phase is
nearly pure A it hardly matters to the values of the DH and
DS of transfer whether the transfer of the A molecule to b is
from the coexisting a phase (when they are then DHA and
DSA) or from pure A, and now in either case there is hardly
any difference between DS and DS*.
This completes our review of the thermodynamics of hydro-

phobic hydration. We turn next to microscopic models and to
the phenomenon of hydrophobic attraction.

IV. Microscopic models

There are many and diverse microscopic models of solutions of
hydrophobes in water (see refs. 9, 19, 21, 29, 35, 40, 77, 78,
98 among many others), but we shall here describe only those
we have ourselves been studying, which is a class of lattice
models.87,99–102

Fig. 4 is an example in two dimensions with lattice coordina-
tion number Z ¼ 4, but the same basic model may be in any
number of dimensions with a variety of lattice types. Solvent
molecules are represented by the larger circles, one at each lat-
tice site. Each may be in any of q (� 2) possible orientations
or internal states, of which one (state number 1, say) is distin-
guished from the q� 1 others: neighboring solvent molecules
interact with an energy w when both are in that special state
1 but with a higher energy u ( > w) otherwise. Solute molecules
are represented by the smaller circles in Fig. 4. They can be
accommodated only on the bonds between lattice sites, i.e.,
between neighboring pairs of solvent molecules, and only then
if both solvent molecules of the neighboring pair are in the
special state or orientation 1. Thus, accommodation of a solute
restricts the possible orientations of the neighboring solvent
molecules and at the same time puts that solvent pair in its
low-energy configuration. Thus, the model has built into it
the basic mechanism of hydrophobicity: the forced accommo-
dation of the solute is energetically favorable but entropically
unfavorable.

Lest the models seem more artificial than they are, it should
be emphasized that, as in any lattice fluid model,97,103 the
molecules are not to be thought of as confined to lattice sites
or bond centers. One should think of the volume divided into

Fig. 3 Closed-loop solubility curve with components A and B. Con-
centration variable xB is the mole or mass fraction of B. Points C and
C0 mark the lower and upper critical solution points. Temperatures T1

and T4 are those of the minimum solubility of A in B and of B in A,
respectively, while the intermediate temperature T2 is that at which
DHA and DSA vanish, and T3 that at which DHB and DSB vanish.

3088 Phys. Chem. Chem. Phys., 2003, 5, 3085–3093



cells (only as a coordinate system, not with impenetrable
walls), so that every molecule has access to any point in the
whole volume. The only artificiality is that the interactions
between molecules now depend on discrete rather than contin-
uous distance variables.
The two parameters u�w and q� 1 are properties of the

model solvent alone. The model has a third parameter, v,
which is the energy of interaction between an accommodated
solute molecule and the two solvent molecules that neighbor
it. All three parameters enter into the solubility S, defined in
(17), while the solvent-mediated part of the potential of mean
force between pairs of solutes is determined by the solvent
parameters u�w and q� 1 alone.
These follow from the expressions87,99,100

S ¼ P11e
�v=kT ð23Þ

Wðr1; r2Þ ¼ �kT ln
Pðr1; r2Þ

P2
11

; ð24Þ

for the first of which it is assumed that the phase that is in
equilibrium with the saturated solution is a dilute gas. Here
P11 is the probability that any neighboring pair of solvent
molecules in the pure solvent will both be found to be in
the special orientation 1; P(r1 ,r2) is the probability that
the solvent molecules that are the neighbors of the bonds cen-
tered at r1 and r2 will all be found to be in that special orien-
tation; and W(r1 , r2) is the solvent-mediated part of the
potential of mean force between a pair of solute molecules
at r1 and r2 in the infinitely dilute solution; i.e., the potential
of mean force from which the direct solute–solute interaction,
whatever that might be, has been subtracted. The parameters
u�w and q� 1 are implicit in P11 and P(r1 , r2) while v
appears explicitly in (23). The nearest-neighbor pair correla-
tion P11 and the pair–pair correlation function P(r1 ,r2) are
obtained analytically in the one-dimensional version of the
model99 and with sufficient accuracy by Monte Carlo simula-
tion in two or three dimensions.87,100

For the simulations it is convenient to recognize the equiva-
lence of the model to a related Ising model or one-component
lattice gas.102 With conventional Ising-model notation ,104,105

the spin–spin interaction-energy parameter J and magnetic
field H in the equivalent Ising model are related to u�w and
q� 1 by

J ¼ 1

4
ðu� wÞ; 2H ¼ 1

2
Zðu� wÞ � kT lnðq� 1Þ ð25Þ

where Z is the coordination number of the lattice (Z ¼ 2 in one
dimension, Z ¼ 6 or 8 for the simple cubic or body-centered

cubic lattices, respectively, in three dimensions, etc.). In the
equivalent one-component lattice gas106 in which the cells are
of volume v0 , the activity is z, and the near-neighbor inter-
action energy is �e, the equivalences are

e ¼ u� w; v0z ¼ 1=ðq� 1Þ: ð26Þ

The probability P1 that any given solvent molecule in the
hydrophobic-interaction model be in the special state 1 rather
than in any of the q� 1 other states is equivalently the prob-
ability that any given cell in the lattice gas model be occupied
rather than empty or that any given spin in the Ising model be
in the direction of the field rather than opposed.
The model in any number of dimensions and for any

coordination number may be treated in Bethe–Guggenheim
approximation107,108 as well as by simulation. (For the applica-
tion of the Bethe–Guggenheim approximation to different lat-
tice models of water and hydrophobic solvation see Besseling
and Lyklema35 and Eads.78) The approximation is exact on a
Bethe lattice (Cayley tree), on which there are no closed loops,
so that, as in one dimension, between any two sites there
is only a single, unique path. Then W(r1 ,r2) may be written
W(r), where r is the distance between bond centers measured
as a number of lattice steps; and then via (24),

WðrÞ ¼ �kT ln gðr� 1Þ ðr � 2Þ ð27Þ

where g(r) is the pair distribution function (radial distribution
function) of the equivalent one-component lattice gas in one
dimension. For r ¼ 1,

W ð1Þ ¼ kT ln y; ð28Þ

with y (0� y� 1) the dimensionless density of the one-compo-
nent lattice gas. As remarked earlier, this lattice-gas density is
also the probability P1 that any solvent molecule in our origi-
nal model be in the special state 1. Further, the solubility S in
our model, via (23), is given in Bethe-Guggenheim approxima-
tion by

S ¼ y2gð1Þe�v=kT : ð29Þ

In this approximation, the lattice-gas g(r) and density y
required in (27)–(29) are expressible in terms of the solvent
parameters u�w and q� 1 of the hydrophobic-interaction
model by

gðrÞ ¼ 1þ 1

y
� 1

� �
Q� 1

Qþ 1

� �r

ðr � 1Þ ð30Þ

1

y
� 1 ¼ 1þ a

að1þ caÞ ð31Þ

where

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðc� 1Þð1� yÞy

p
ð32Þ

c ¼ eðu�wÞ=kT ð33Þ

1þ ca
1þ a

� �Z�1

¼ðq� 1Þa; ð34Þ

with Z again the coordination number of the lattice. The lat-
tice-gas density y is thus given parametrically (parameter a)
in terms of the model parameters q� 1 and u�w (and Z
and the temperature T ) by (31) and (34), with c defined by (33).
With Z ¼ 2 the Bethe–Guggenheim approximation becomes

the exact one-dimensional version of the model.99 In the limit
Z!1 and u�w! 0 with fixed f ¼ Z(u�w) it becomes the
mean-field approximation, in which g(r)�1 for all r� 1 and
for which y is given implicitly in terms of q� 1 and f by q� 1 ¼
(1/y� 1)exp(yf/kT ).
One object in the study of these models is to find a connec-

tion between the free energy of hydrophobic hydration (DF�
V

Fig. 4 The lattice model. Large open circles at the lattice sites repre-
sent the solvent molecules, small filled circles on the bonds between
sites represent the solute molecules.
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or DG�
p, Section III), and the solvent-mediated part, W(r1 , r2),

of the potential of mean force between hydrophobic solutes.
To this end we choose the parameters u�w and q� 1 to match
the experimental solubility S of methane as closely as possible
over the 60� temperature interval 273 K�T� 333 K, and then
with these values of the parameters calculate W.
We continue to define f ¼ Z(u�w). In Fig. 5 we show the

nearly perfect fit to the experimental S obtained with the
model in Bethe–Guggenheim approximation with Z ¼ 8 and
the model parameters

f=k ¼ 1008 K; q� 1 ¼ 6:16; v=k ¼ 464:3 K: ð35Þ

The corresponding plot when the properties of the model on
the body-centered cubic lattice (Z ¼ 8) are obtained by Monte
Carlo simulation87 and the solubility then fit with the para-
meter values

f=k ¼ 1026 K; q� 1 ¼ 6:7; v=k ¼ 406:7 K ð36Þ

is almost indistinguishable from that in Fig. 5.
It is noteworthy that the parameter values in (35) and (36),

where Z ¼ 8 in both, are not very different. It should also be
noted that it is not a forgone conclusion that the experimental
S even over this restricted temperature range could have been
fit by these three-parameter functions. Only the two para-
meters u�w and q� 1 occur in the factor P11 in (23), so the
slope and curvature and thus the whole shape of a plot of
�kT ln S as a function of T have to be fit by those alone, while
the third parameter, v, corresponds merely to a constant dis-
placement of such a plot without a change in its shape. In
Bethe–Guggenheim approximation the fit is better the greater
the coordination number Z, and so, although already nearly
perfect at Z ¼ 8, is even better in mean-field approximation
(Z!1), where the fit is with the parameter values

f=k ¼ 912:4 K; q� 1 ¼ 4:95; v=k ¼ 498:2 K; ð37Þ

while the fit is poorest, although still acceptable, in one dimen-
sion (Z ¼ 2).87

We note in (35)–(37) that the model parameter v is positive.
One must make a distinction between the interaction energy
between solute and solvent, which here is v, and the energy
or enthalpy change DEV or DHp of the whole system that
accompanies the forced accommodation of the solute. The lat-
ter are negative here, as well as in reality, because they follow
from the experimental S, which we have fit nearly exactly with
the parameter values in (35)–(37). But we note also in (35)–(37)
that f, which is Z(u�w), is greater than v; so the favorable
energy and enthalpy of hydration is a consequence of the

energetically favorable change in the solvent–solvent inter-
action that accompanies the dissolution of the solute, which
overweighs what in this model (not necessarily in reality) is
the unfavorable solute–solvent interaction.
With the parameters in (35) or (36) that fit the experimental

S, one may now calculate the solvent-mediated part of the
potential of mean force, W, between methane molecules in
the infinitely dilute solution. This follows from (24) in general
for the models of this class, or in particular from (27) and (28)
with (30)–(34) in Bethe–Guggenheim approximation. In Fig. 6
we showW(r)/kT in this approximation with Z ¼ 8, as a func-
tion of r at each of the three temperatures 273 K, 298 K, and
333 K. These curves are strongly reminiscent of the theoretical
curves in Marčelja et al.,17 although those are indexed by
solute size rather than temperature. In Fig. 7, from ref. 87,
we show the corresponding results from the Monte Carlo
simulations of the model on the body-centered cubic lattice.
In the latter plot W(r1 ,r2) is again called W(r), with r again
in multiples of the shortest distance between bond centers,
but this shortest distance is now the fraction 1/

p
3 ¼

0.577� � � of the bond length itself. In both figures, then, ‘‘r ¼ 1’’
is the closest the centers of two hydrophobic molecules may
come if both molecules are imagined located at the lattice’s
bond centers.

Not visible in Fig. 6 on the scale of that plot, and scarcely
visible in Fig. 7, is the crossing of the curves for the various
temperatures: the higher the temperature the stronger the
hydrophobic attraction as measured by �W(1) but the shorter
is its range as measured by its rate of decay as r!1. For the
body-centered cubic lattice, and generally in three dimensions

Fig. 5 Fit of the model S in Bethe–Guggenheim approximation with
Z ¼ 8 to the experimental S for methane. The points are the theoreti-
cal values with the parameters given in (35); the curve is from Battino’s
interpolation formula fitting the experimental results.1

Fig. 6 W(r)/kT for the model in Bethe–Guggenheim approximation
with Z ¼ 8.

Fig. 7 W(r)/kT by Monte Carlo simulation of the model on the
body-centered cubic lattice.
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with the direct interactions of short range,W(r) decays propor-
tionally to (1/r)exp(�r/x), and in Bethe–Guggenheim approx-
imation proportionally to exp(�r/x), where the decay lengths
x decrease with increasing temperature. This may not be an
important feature of hydrophobic forces, however, because
W(r) is already so small when the curves cross: the three curves
in Fig. 6 taken in pairs cross at r ¼ 2.7, 4.0, and 5.9.
This attraction, which is largely entropic in origin, has been

termed the ‘‘hydrophobic bond’’.3,6 In both figures it is seen
that the strength of the attraction, �W(1), is only about kT.
The direct van der Waals attraction between pairs of solutes
at this distance is only about 15 or 20% of the solvent-mediated
attraction,19,109 so the total is still only about kT. This means,
for example, that of the ‘‘hydrophobic bonds’’ in the native
structure of a protein, at any moment approximately the frac-
tion 1/(1+ e) ffi 1/4 of them are ‘‘broken’’. This may be
important for the dynamical functioning of the protein.110

This has illustrated the calculation of the strength �W(1) of
the hydrophobic attraction in the model, using parameters that
closely fit the experimental S; or, equivalently, from (16), that
fit the experimental hydration free energy DF�

V or DG�
p. Fig. 8

now shows how W(1)/kT varies with DG�
p/kT. Shown are the

Bethe–Guggenheim approximation with Z ¼ 2, 3, 8, and 1
(Z ¼ 2 is the one-dimensional model and Z ¼ 1 the mean-
field approximation), and the results of the simulation on the
body-centered cubic lattice. We see a steady progression with
Z. Over this restricted temperature range all the plots are
nearly linear: almost exactly linear from the simulations but
with slight positive curvature for Z ¼ 2 and 3 and slight nega-
tive curvature for Z ¼ 8 and 1 in the Bethe–Guggenheim
approximation. They are nearly parallel with a common slope
near �0.7.
These plots answer the question, at least for this class of

models, of how the strength of the solvent-mediated attraction
between a pair of hydrophobic solute molecules depends on
the hydration free energy of a single one; i.e., they are a quan-
titative answer to the question implicit in Fig. 2. We note again
that the hydrophobic effect, i.e., DG�

p > 0 and W(1)< 0,
becomes stronger with increasing temperature. We also see
again that �W(1) is only about kT, while DG�

p, from the figure
or from Table 1, is about 3kT. One can understand why
�W(1)<DG�

p.
87 Suppose in Fig. 2 that the volume of solvent

structurally and energetically affected by the presence of an
isolated solute molecule is v1 and that the total volume so
affected by a closely spaced pair of solute molecules is v2 .

Let the resulting unfavorable free-energy density in those
affected regions be some f > 0. Then DG�

p ¼ v1f > 0; while
the solvent-mediated potential energy, W(1) in the notation
of our model, is W(1) ¼ (v2� 2v1)f, which is negative (attrac-
tive) because v2< 2v1 . But also v2 > v1 , so v2� 2v1 > � v1 ;
i.e., �W(1)<DG�

p. In this argument we have assumed that
the free energy density (what we have called f) in the lens-
shaped overlap region and in the non-overlap region are not
very different.
A related argument allows one to guess the sign of the three-

body contribution to the hydrophobic attraction. This is the
subject of the next section.

V. Three-body potential

In an analysis of the one-dimensional version of this lattice
model101 it was found that the solvent-mediated part of the
potential of mean force among n solute molecules on the bonds
centered at x1 , x2 ,. . ., xn with x1< x2< � � �< xn is the sum of
the pair potentials between nearest neighbors only:

W ðr12; r23; � � � ; rn�1;nÞ ¼ W ðr12Þ þWðr23Þ þ � � � þW ðrn�1;nÞ
ð38Þ

where r12 ¼ x2� x1 , etc.With three solute molecules at x1 , x2 ,
x3 , this is

Wðr12; r23Þ ¼ Wðr12Þ þWðr23Þ: ð39Þ

This is greater than the sum of the three pair potentials,

W ðr12; r23Þ �W ðr12Þ �W ðr23Þ �Wðr13Þ ¼ �W ðr13Þ > 0

ð40Þ

because the pair potential W(r) is negative (attractive); i.e.,
the three-body contribution to the energy of interaction of
three such solute molecules is positive: the three-body force
is repulsive.
One may guess that the same will be true in near linear con-

figurations of three hydrophobic solutes in two or three dimen-
sions as well, while an extension of the argument at the end of
Section IV indicates that it may also be true in triangular con-
figurations of the three. An equilateral configuration of three is
shown schematically in Fig. 9. The volume of solvent affected
by the presence of a single solute molecule is called u1 ; it is the
same as what was called v1 in the argument at the end of Sec-
tion IV. The volume of the lens-shaped region of overlap of
two such regions is u2 , previously called 2v1� v2 . The volume
of the curvilinear region of triple overlap is u3 .
The total volume of solvent affected by the presence of the

solutes in this configuration is 3u1� 3u2+ u3 . But with W1 ,
W2 , andW3 the one-, two-, and three-body effective potentials,
the total excess free energy due to the presence of the three
solute molecules is 3W1+ 3W2+W3 , because there are three
distinct single bodies, three distinct pairs, and one triple. The

Fig. 8 Variation of W(1)/kT with DG�
p/kT; �W(1) is the strength of

the hydrophobic attraction between a pair of solute molecules while
DG�

p is the hydration free energy of a single one. The solid curves are
the Bethe–Guggenheim approximation with the indicated coordination
numbers Z; the dashed curve is the result of Monte Carlo simulation of
the model on the body-centered cubic lattice, for which Z ¼ 8.

Fig. 9 Three solute molecules in an equilateral configuration. The
volume of solvent affected by the presence of a single solute molecule
is u1 , the volume of the lens-shaped region of overlap of two such
regions is u2 , and the volume of the curvilinear region of triple overlap
is u3 .
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one-body potentialW1 is the earlier hydration free energy DG�
p,

which was v1f, now called u1f; the pair potential W2 is what
was earlier calledW(1), the effective potential between a closely
spaced pair of solutes, which was (v2� 2v1)f, now called �u2 f.
Thus, the three-body potential W3 , which is our present
object, is here seen to be W3 ¼ u3f, which is positive. Thus,
in this configuration, as in the linear configuration in the
one-dimensional model, the three-body force is repulsive,
which is what we wished to determine.
But for application to real hydrophobic interactions this

argument can be no more than suggestive; it is not a substitute
for detailed calculation with realistic models.53,76

VI. Summary and conclusions

The basic result of the thermodynamics as outlined in Section
II and illustrated in Section III is contained in eqns. (18)–(22),
where the thermodynamics of transfer of a hydrophobic mole-
cule into water are seen to follow from measurements of the
equilibrium partition coefficient or Ostwald absorption coeffi-
cient. That the suitably defined free energy of transfer [denoted
with an asterisk in eqns. (3) and (4)] is positive and equal to a
few multiples of the thermal energy kT, and that the energy (or
enthalpy) and suitably defined entropy of transfer are both
negative, are characteristic of, and essentially define, hydro-
phobic solutes. Hydrophobicity increases with increasing tem-
perature, reflecting the corresponding decrease in solubility.
Many of the features of the hydrophobic effect are realisti-

cally rendered by the lattice model described in Section IV.
The model was designed to make the accommodation of a
solute in the solvent energetically favorable but entropically
unfavorable, and thus to incorporate the basic mechanism of
hydrophobicity as revealed by the thermodynamics. Once the
parameters in the model are chosen to reproduce the experi-
mentally measured solubility of methane and its temperature
dependence in the temperature interval 273 to 333 K, the
model leads to a realistic picture of the solvent-mediated part,
W(r), of the potential of mean force between a pair of solute
molecules as a function of their separation r. It is found that
‘‘W(1) ’’, the potential at close approach of the pair, is nega-
tive, which is the hydrophobic attraction, and becomes more
negative with increasing temperature, in accord with the con-
clusion from the thermodynamic analysis that hydrophobicity
increases with increasing temperature. The strength �W(1) of
the hydrophobic attraction increases nearly linearly with the
free energy of hydrophobic hydration, but is less than the
latter: only about kT as compared with about 3kT. That
the solvent-mediated attraction is as small as kT means that
hydrophobic ‘‘bonds ’’ are easily ‘‘broken’’, which may have
implications for dynamical effects in protein structure.
It is remarked in Section V that in the one-dimensional ver-

sion of the lattice model the three-body force in the solvent-
mediated interaction among hydrophobic solutes is always
repulsive. A simple argument is presented according to which
that may still be so in various configurations in two and three
dimensions as well; but one is warned that the argument, while
suggestive, is not definitive.

Acknowledgements

We thank Jonathan Widom and Harold Scheraga for helpful
discussions. KK acknowledges the award of a fellowship from
the Japan Society for the Promotion of Science, which made
possible his participation in this work. The work was sup-
ported by the U.S. National Science Foundation and the
Cornell Center for Materials Research.

References

1 R. Battino, in IUPAC Solubility Data Series, ed. H. L. Clever
and C. L. Young, Pergamon, Oxford, 1987, vol. 27/28, pp. 1–6.

2 H. S. Frank and M. W. Evans, J. Chem. Phys., 1945, 13,
507–532.

3 W. Kauzmann, Adv. Protein Chem., 1959, 14, 1–63.
4 G. Némethy and H. A. Scheraga, J. Phys. Chem., 1962, 66, 1773–

1789.
5 G. Némethy, Angew. Chem., Int. Ed., 1967, 6, 195–206.
6 G. Némethy, H. A. Scheraga and W. Kauzmann, J. Phys. Chem.,

1968, 72, 1842.
7 F. H. Stillinger, J. Solution Chem., 1973, 2, 141–158.
8 J. C. Owicki and H. A. Scheraga, J. Am. Chem. Soc., 1977, 99,

7413–7418.
9 L. R. Pratt and D. Chandler, J. Chem. Phys., 1977, 67, 3683–

3704.
10 C. Tanford, The Hydrophobic Effect: Formation of Micelles and

Biological Membranes, Wiley, New York, 2nd edn., 1980.
11 A. Ben-Naim, Hydrophobic Interactions, Plenum, Oxford,

1980.
12 R. L. Baldwin, Proc. Natl. Acad. Sci., 1986, 83, 8069–8072.
13 D. H. Everett, in Hydrogen-Bonded Solvent Systems, ed.

A. K. Covington and P. Jones, Taylor & Francis, London,
1968, pp. 1–8.

14 F. Franks, Water, A Matrix of Life, Royal Society of Chemistry,
Cambridge, 2nd edn., 2000.

15 R. Lumry and S. Rajender, Biopolymers, 1970, 9, 1125–1227.
16 P. J. Rossky and M. Karplus, J. Am. Chem. Soc., 1979, 101,

1913–1937.
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69 T. Urbič, V. Vlachy, Y. V. Kalyuzhnyi, N. T. Southall and K. A.

Dill, J. Chem. Phys., 2002, 116, 723–729.
70 T. Ghosh, A. E. Garcı́a and S. Garde, J. Chem. Phys., 2002, 116,

2480–2486.
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